1 / 8
文档名称:

磁共振成像技术.doc

格式:doc   大小:22KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

磁共振成像技术.doc

上传人:wz_198614 2017/10/14 文件大小:22 KB

下载得到文件列表

磁共振成像技术.doc

文档介绍

文档介绍:磁共振成像技术
核磁共振(Nuclear ic resonance, NMR)成像,现称为磁共振成像(ic resonance imaging, MRI),是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。它从原理的发现到目前临床各种先进成像技术的应用,是基于科学家们对原子结构的不断认识。
1924年Pauli发现电子除对原子核绕行外,还可高速自旋,有角动量和磁矩。1946年美国哈佛大学的Percell及斯坦福大学的Bloch分别独立地发现磁共振现象并接收到核子自旋的电信号,同时将该原理最早用于生物实验,在物理学、化学方面作出了较大的贡献。1952年荣获诺贝尔物理奖。磁共振成像的设想出自Damadian。1971年他发现了组织的良、恶性细胞的MR信号有所不同。1972年P. C. Lauterbur用共轭摄影法产生一幅试管的MR图象。1974年作出第一幅动物的肝脏图象。随后MRI技术在此基础上飞速发展,继而广泛地应用于临床。
一、磁共振成像基本原理与设备
(一)磁共振现象与MRI
含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体(图1)。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列(图2)。在这种状态下,
图1 图2
用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁
体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxation process),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxation time)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxation time)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格
所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。
磁共振成像时,会把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),再排列成矩阵,即数字矩阵(digital matrix),进行空间编码。用转换器将每个T值转为模拟灰度,既把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素(pixel),并按矩阵排列,从而重建图像。
(二)MRI设备
MRI的成像系统包括MR信号产生和数据采集与处理及图像显示两部分。MR信号的产生是来自大孔径,具有三维空间编码的MR波谱仪,而
数据处理及图像显示部分,则与CT扫描装置相似。
MRI设备包括磁体、梯度线圈、供电部分、射频发射器及M