文档介绍:该【2022-2023学年河北省沧州市高三下学期二诊模拟数学试题 】是由【lu2yuwb】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【2022-2023学年河北省沧州市高三下学期二诊模拟数学试题 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年河北省沧州市高三下学期二诊模拟数学试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的( ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.记单调递增的等比数列的前项和为,若,,则( )
A. B. C. D.
3.某四棱锥的三视图如图所示,该几何体的体积是( )
A.8 B. C.4 D.
4.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
5.集合,,则=( )
A. B.
C. D.
6.a为正实数,i为虚数单位,,则a=( )
A.2 B. C. D.1
7.设函数的导函数,且满足,若在中,,则( )
A. B. C. D.
8.设,是非零向量,若对于任意的,都有成立,则
A. B. C. D.
9.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )
A.
B.
C.
D.
10.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3
A. B. C. D.
11.在中,,,,若,则实数( )
A. B. C. D.
12.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数为奇函数,则______.
14.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.
15.在等比数列中,,则________.
16.如图所示梯子结构的点数依次构成数列,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知满足 ,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)
18.(12分)已知函数(,),.
(Ⅰ)讨论的单调性;
(Ⅱ)若对任意的,恒成立,求实数的取值范围.
19.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.
(1)求椭圆的方程;
(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.
20.(12分)设函数f(x)=sin(2x-π6)+sin(2x+π3), x∈R.
(I)求f(x)的最小正周期;
(II)若α∈(π6,π)且f(α2)=12,求sin(2α+π6)的值.
21.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).
(1)请利用正态分布的知识求;
(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:
①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元)
概率
市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?
附:①;②若;则,,.
22.(10分)已知函数.
(1)证明:函数在上存在唯一的零点;
(2)若函数在区间上的最小值为1,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.
【详解】
作出函数的图象如图,
由图可知,,
函数有2个零点,即有两个不同的根,
也就是与在上有2个交点,则的最小值为;
设过原点的直线与的切点为,斜率为,
则切线方程为,
把代入,可得,即,∴切线斜率为,
∴k的取值范围是,
∴函数有两个零点”是“”的充分不必要条件,
故选A.
【点睛】
本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.
2、C
【解析】
先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.
【详解】
因为为等比数列,所以,故即,
由可得或,因为为递增数列,故符合.
此时,所以或(舍,因为为递增数列).
故,.
故选C.
【点睛】
一般地,如果为等比数列,为其前项和,则有性质:
(1)若,则;
(2)公比时,则有,其中为常数且;
(3) 为等比数列( )且公比为.
3、D
【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.
【详解】
根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:
结合图中数据知,该四棱锥底面为对角线为2的正方形,
高为PA=2,
∴四棱锥的体积为.
故选:D.
【点睛】
本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.
4、B
【解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
5、C
【解析】
先化简集合A,B,结合并集计算方法,求解,即可.
【详解】
解得集合,
所以,故选C.
【点睛】
本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.
6、B
【解析】
,选B.
7、D
【解析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.
【详解】
设,
所以 ,
因为当时,,
即,
所以,在上是增函数,
在中,因为,所以,,
因为,且,
所以,
即,
所以,
即
故选:D
【点睛】
本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.
8、D
【解析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.
【详解】
由题意,得向量是所有向量中模长最小的向量,如图,
当,即时,最小,满足,对于任意的,
所以本题答案为D.
【点睛】
本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.
9、D
【解析】
由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.
10、D
【解析】
解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,
结合图中数据,计算它的体积为:
V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+)cm1.
故答案为6+.
点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.
11、D
【解析】
将、用、表示,再代入中计算即可.
【详解】
由,知为的重心,
所以,又,
所以,
,所以,.
故选:D
【点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.
12、C
【解析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.