1 / 8
文档名称:

微分中值定理论文.doc

格式:doc   大小:875KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

微分中值定理论文.doc

上传人:012luyin 2018/8/17 文件大小:875 KB

下载得到文件列表

微分中值定理论文.doc

文档介绍

文档介绍:引言
通过对数学分析的学****我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学****我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。
中值定理的内容及联系
基本内容[4][5]
对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle)定理、拉格朗日(Lagrange)定理和柯西(Cauchy)定理”。这三个定理的具体内容如下:
Rolle 定理
若在上连续,在内可导,且,则至少存在一点,使。
Lagrange定理
若在上连续,在内可导,则至少存在一点,使
Cauchy定理
设,在上连续,在内可导,且,则至少存在一点
,使得

三个中值定理之间的关系
现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日定理和柯西定理,看看这两者之间又是如何的联系?我们先对柯西定理进行观察,从观察中会是我们作出这样的假设,如果令定理中的的话,发现定理成为了拉格朗日定理。这使得我们发现他们二者之间的联系, 拉格朗日定理是柯西定理收缩,而柯西定理则是拉格朗日定理的推广。我们利用这一方法可以得到它们之间的关系。
总的来说,这三个定理既单独存在,相互之间又存在着联系。我们从上面的讨论中可以总结得到,罗尔定理是这一块内容的基石,而拉格朗日定理则是这一块内容的核心,那么柯西定理是这一块内容的推广应用。
如果我们从几何的意义上来看这三个中值定理的话,那它们之间又是如何的呢?在这里我们不具体的给予研究,而是直接给予结果。若用几何解释:“若一条连续的曲线,曲线上端点除外的每一点都有切线存在,且存在的切线于轴相交的夹角不为直角;那么像这一类曲线具有共同的属性——曲线上有一点,它的切线与曲线端点的连线平行”。
定理的推广[6][7]
前面我们已经讨论了定理之间的关系,接下来我们来看它们的推广。从前面的内容我们知道,这三个定理都要求函数在上是连续,在内是可导。那么我们如果把定理中的闭区间,把它推广到无限区间或,再把开区间推广到无限区间或的话,则这些定理是否还能满足条件,或者我们能