文档介绍:粒子加速器
,物理
  
粒子加速器
学家就认识到要想认识原子核,必须用高速粒子来变革原子核。天然放射性提供的粒子能量有限,只有几兆电子伏特(MeV),天然的宇宙射线中粒子的能量虽然很高,但是粒子流极为微弱,例如能量为10^14电子伏特( eV )的粒子每小时在 1平方米的面积上平均只降临一个,而且无法支配宇宙射线中粒子的种类、数量和能量,难于开展研究工作。因此为了开展有预期目标的实验研究,几十年来人们研制和建造了多种粒子加速器,性能不断提高。在生活中,电视和X光设施等都是小型的粒子加速器。
应用粒子加速器发现了绝大部分新的超铀元素和合成的上千种新的人工放射性核素,并系统深入地研究原子核的基本结构及其变化规律,促使原子核物理学
迅速发展成熟起来;高能加速器的发展又使人们发现包括重子、介子、轻子和各种共振态粒子在内的几百种粒子,建立粒子物理学。近20多年来,加速器的应用已远远超出原子核物理和粒子物理领域,在诸如材料科学、表面物理、分子生物学、光化学等其它科技领域都有着重要应用。在工、农、医各个领域中加速器广泛用于同位素生产、肿瘤诊断与治疗、射线消毒、无损探伤、高分子辐照聚合、材料辐照改性、离子注入、离子束微量分析以及空间辐射模拟、核爆炸模拟等方面。迄今世界各地建造了数以千计的粒子加速器,其中一小部分用于原子核和粒子物理的基础研究,它们继续向提高能量和改善束流品质方向发展;其余绝大部分都属于以应用粒子射线技术为主的“小”型加速器。
编辑本段结构
粒子加速器的结构一般包括3个主要部分:①粒子源,用以提供所需加速的粒子,有电子、正电子、质子、反质子以及重离子等等。②真空加速系统,其中有一定形态的加速电场,并且为了使粒子在不受空气分子散射的条件下加速,整个系统放在真空度极高的真空室内。③导引、聚焦系统,用一定形态的电磁场来引导并约束被加速的粒子束,使之沿预定轨道接受电场的加速。所有这些都要求高、精、尖技术的综合和配合。
加速器的效能指标是粒子所能达到的能量和粒子流的强度(流强)。按照粒子能量的大小,加速器可分为低能加速器(能量小于10^8eV)、中能加速器(能量在10^8~10^9eV)、高能加速器(能量在10^9~10^12eV)和超高能加速器(能量在10^12eV以上)。目前低能和中能加速器主要用于各种实际应用。
编辑本段分类
粒子加速器按其作用原理不同可分为静电加速器、直线加速器、回旋加速器、电子感应加速器、同步回
  
旋加速器、对撞机等。
利用直线加速器加速带电粒子时,粒子是沿着一条近于直线的轨道运动和被逐级加速的,因此当需要很高的能量时,加速器的直线距离会很长。有什么办法来大幅度地减小加速器的尺寸吗?办法说起来也很简单,如果把直线轨道改成圆形轨道或者螺旋形轨道,一圈一圈地反复加速,这样也可以逐级谐振加速到很高的能量,而加速器的尺寸也可以大大地缩减。
,提出了研制回旋加速器的建议。劳伦斯建议在回旋加速器里增加两个半圆形磁场,使带电粒子不再沿着直线运动,而沿着近似于平面螺旋线的轨道运动,这种改造使得加速器的电场不至于如此之长而导致电场能损失,是一个极富设想的设计发明。1931年建成了第一台回旋加速器,磁极直径约10厘米,用2千伏的加速电压工作,把氘核加速到80keV,证实了回旋加速器的工作原理是可行的。在1932年又建成了磁极直径为27厘米的回旋加速器,可以把质子加速到1MeV。
回旋加速器的电磁铁的磁极是圆柱形的,两个磁极之间形成接近均匀分布的主导磁场。磁场是恒定的,不随时间而变化。在磁场作用下,带电粒子沿着圆弧轨道运动,粒子能量不断地提高,轨道的曲率半径也不
  
SLAC的直线加速器中电子枪的原理图
断地提高,运动轨道近似于一条平面螺旋线。
两个磁极之间是真空室。里面装有两个半圆形空盒状的金属电极,通称为“D形电极”。D形电极接在高频电源的输出端上,2个D形电极之间的空隙(加速间隙)有高频电场产生。粒子源安装在真空室中心的加速间隙中。D形电极内部没有高频电场,粒子进入D形电极之内就不再被加速,在恒定的主导磁场作用下做圆周运动。只要粒子回旋半圆的时间等于加速电压半周期的奇整数倍,就能够得到谐振加速。用一个表达式可以表示成:
Tc=KTrt
式中Tc是粒子的回旋周期,Trt是加速电压的周期,K应该是奇整数。
这类利用轴向磁场使带电粒子做回旋运动,周期性地通过高频电场加速粒子的回旋加速器又可以分为两类:
第一类是没有自动稳相机制的。等时性回旋加速器就是属于这一类。D形电极间加有频率固定的