文档介绍:秦九韶算法
(1) 在学习中国古代数学中的算法案例的同(2) 时,进一步体会算法的特点。
(3) 体会中国古代数学对世界数学发展的贡献。
2. 重点与难点
重点:理解秦九韶算法的思想。
难点:用循环结构表示算法步骤。
(1) 设计求多项式f(x)=2x5-5x4-4x3+3x2-6x+7当x=5时的值的算法,并写出程序。
学生提出一般的解决方案,如:
x=5
f=2 * x^5 – 5 * x^4 – 4 * x^3 + 3 * x^2 – 6 * x + 7
PRINT“f=”;f
END
教师点评:上述算法一共做了解15次乘法运算,5次加法运算,优点是简单,易懂。缺点是不通用,不能解决任意多项式的求值问题,而且计算效率不高。
(2)有没有更高效的算法?
师:计算x的幂时,可以利用前面的计算结果,以减少计算量,即先计算x2,,().x, (().x).x的值,这样计算上述多项式的值,一共需要多少次乘法,多少次加法?
第二种做法与第一种做法相比,乘法的运算次数减少了,因而能提高运算效率,而且对于计算机来说,做一次乘法所需的运算时间比做一次加法要长得多,因此第二种做法更快地得到结果。
(3)能否探索更好的算法,解决任意多项式的求值问题?
教师引导学生把多项式变形为:f(x)= 2x5-5x4-4x3+3x2-6x+7
=((((2x-5)x-4)x+3)x-6)x+7
并提问:从内到外,如果把每一个括号都看成一个常数,那么变形后的式子中有哪些“一次式”?x的系数依次是什么?
(4)若将x的值代入变形后的式子中,那么求值的计算过程是怎样的?
师:计算的过程可以列表表示为:
多项式x系数
2
-5
-4
3
-6
7
运算
10
25
105
540
2670
+
变形后x的"系数"
2
5
21
108
534
2677
*5
最后的系数2677即为所求的值,让学生描述上述计算过程
师:指出这种算法就是“秦九韶算法”,同时介绍秦九韶的生平。
(5)用秦九韶算法求多项式的值,与多项式的组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算?
教师引导学生发现在求值的过程中,计算只与多项式的系数有关,让学生统计所进行的乘法和加法运算的次数。
(6) 秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题吗?
师:怎样用秦九韶算法求一般多项式f(