1 / 9
文档名称:

通原第二次实验资料.pdf

格式:pdf   大小:1,747KB   页数:9页
下载后只包含 1 个 PDF 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

通原第二次实验资料.pdf

上传人:1781111**** 2024/5/7 文件大小:1.71 MB

下载得到文件列表

通原第二次实验资料.pdf

相关文档

文档介绍

文档介绍:该【通原第二次实验资料 】是由【1781111****】上传分享,文档一共【9】页,该文档可以免费在线阅读,需要了解更多关于【通原第二次实验资料 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..第二部分通信原理重要部件实验实验1抽样定理及其应用实验一、,加深对抽样定理的理解;,使学生能加深理解脉冲幅度调制的特点;,掌握调整测试方法。二、,位号:H(实物图片如下),位号:G(实物图片见第3页)、实验原理:..抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM)、脉宽调制(PDM)和脉位调制(PPM)。虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。关于PDM和PPM,国外在上世纪70年代研究结果表明其实用性不强,而国内根本就没研究和使用过,所以这里我们就不做介绍。本实验平台仅介绍脉冲幅度调制,因为它是脉冲编码调制的基础。抽样定理实验电路框图,如图1-1所示。P0332P0132TP0132P03P15开关抽样器DDS信号恢复信道模拟信号源滤波器32W01P1432P024SW02控制抽样脉冲P09形成电路图1-1抽样的实验过程结构示意图本实验中需要用到以下5个功能模块。:它提供正弦波等信号,并经过连线送到“PAM脉冲调幅模块”,作为脉冲幅度调制器的调制信号。P03测试点可用于调制信号的连接和测量;另外,如果实验室配备了电话单机,也可以使用用户电话模块,这样验证实验效果更直接、更形象,P05测试点可用于语音信号的连接和测量。:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM脉冲调幅模块”,作为脉冲幅度调制器的抽样脉冲。P09测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可调,占空比为500/0。(调节方法参见实验5):它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01测试点可以测量到已调信号波形。调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM模拟信道(模拟实际信道的惰性)的传输,从32P03铆孔输出,它可能会产生波形失真。PAM模拟信道电路示意图如图1-2所示,32W01(R1)电位器可改变模拟信道的传输特性,当R1C1=R2C2时,PAM已调信号理论上无失真。:,分别由开关:..K601上位和中位控制,接收滤波器的作用是恢复原调制信号。铆孔P14是接收滤波器与功放的输入端,实验时需用外接导线将32P03与P14连接。:它提供系统工作时钟和接收数字低通滤波器工作时钟。32TP0132P0332W01C1C2R2图1-2PAM信道仿真电路示意图最后强调说明:实际应用的抽样脉冲和信号恢复与理想情况有一定区别。理想抽样的抽样脉冲应该是冲击脉冲序列,在实际应用中,这是不可能实现的。因此一般是用高度有限、宽度较窄的窄脉冲代替。另外,实际应用中使信号恢复的滤波器不可能是理想的。当滤波器特性不是理想低通时,抽样频率不能就等于被抽样信号频率的2倍,否则会使信号失真。考虑到实际滤波器的特性,抽样频率要求选得较高。由于PAM通信系统的抗干扰能力差,目前很少实用。它已被性能良好的脉冲编码调制(PCM)所取代。四、可调元件及测量点的作用32P01:模拟信号输入连接铆孔。32P02:抽样脉冲信号输入连接铆孔。32TP01:输出的抽样后信号测试点。32P03:经仿真信道传输后信号的输出连接铆孔。32W01:仿真信道的特性调节电位器。五、:在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。:用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。:..:打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。:将DDS信号源产生的正弦波(通常频率为2KHZ)送入抽样模块的32P01点,用示波器在32P01处观察,调节电位器W01,使该点正弦信号幅度约2V(峰一峰值)。:当DDS信号源处于《PDM波1》状态,旋转SS01可改变取样脉冲的频率。示波器接在32P02上,可观察取样脉冲波形。:示波器接在32TP01上,可观察PAM取样信号,示波器接在32P03上,调节“PAM脉冲幅度调制”上的32W01可改变PAM信号传输信道的特性,PAM取样信号波形会发生改变。:PAM解调用的低通滤波器电路(接收端滤波放大模块,信号从P14输入)设有两组参数,、5KHZ。调节不同的输入信号频率和不同的抽样时钟频率,用示波器观测各点波形,验证抽样定理,并做详细记录、绘图。(注意,调节32W01应使32TP01、32P03两点波形相似,即以不失真为准。):实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。六、。,并画出实验框图。,记录实验时各种测试条件,所测各点的波形、频率、电压等各项测试数据并验证抽样定理。,波形将会出现哪些失真。。:..实验2PCM编译码系统实验一、;;,掌握它的调整测试方法。二、,位号:H(实物图片如下),位号:G(实物图片见第3页)(选用)(选用):..三、实验原理脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。工作时钟P0334P01TP305734P02DDS抽样量化编码信号源A/D信道P15P1434P04D/A收端低通译码再生功放滤波34P03PCM通信系统的实验方框图如图2-1所示。图2-1PCM通信系统实验方框图在PCM脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM脉冲序列,然后将幅度连续的PAM脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM脉冲序列将转换成二进制编码序列。对ITT规定抽样率为8KHz,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM编码后的标准数码率是64kB。本实验应用的单路PCM编、译码电路是TP3057芯片(见图2-1中的虚线框)。此芯片采用a律十三折线编码,它设计应用于PCM30/32系统中。它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户各占据一个时隙,另外两个时隙分別用于同步和标志信号传送,。各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。若仅有一个用户,在一个PCM帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。本实验模块中,为了降低对测试示波器的要求,将PCM帧的传输速率设置为64Kbit/s或128Kbit/s两种,这样增加了编码数据码元的宽度,便于用低端示波器观测。此时一个PCM帧里,可容纳的PCM编码分别为1路或2路。另外,发送时序FSX与接收时序FSR使:..用相同的时序,测试点为34TP01。实验结构框图已在模块上画出了,实验时需用信号连接线连接34P02和34P03两铆孔,即将编码数据直接送到译码端,传输信道可视为理想信道。另外,TP3057芯片内部模拟信号的输入端有一个语音带通滤波器,其通带为200HZ~4000HZ,所以输入的模拟信号频率只能在这个范围内有效。四、各测量点的作用34TP01:发送时序FSX和接收时序FSR输入测试点,频率为8KHz的矩形窄脉冲;34TP02:PCM线路编译时钟信号的输入测试点;34P01:模拟信号的输入铆孔;34P02:PCM编码的输出铆孔;34P03:PCM译码的输入铆孔;34P04:译码输出的模拟信号铆孔,波形应与34P01相同。注:一路数字编码输出波形为8比特编码(一般为7个半码元波形,最后半个码元波形被芯片内部移位寄存器在装载下一路数据前复位时丢失掉),数据的速率由编译时钟决定,其中第一位为语音信号编码后的符号位,后七位为语音信号编码后的电平值。五、:在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PCM/ADPCM编译码模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。:打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。:“时钟与基带数据产生器模块”上的拨码器4SW02设置“01000”,则PCM的编码时钟为64KHZ(后面将简写为:拨码器4SW02)。拨码器4SW02设置“01001”,则PCM的编码时钟为128KHZ。,模拟信号为正弦波的PCM编码数据观察:(1)用专用铆孔导线将P03、34P01,34P02、34P03相连。(2)拨码器4SW02设置“01000”,则PCM的编码时钟为64KHZ。(3)双踪示波器探头分别接在测量点34TP01和34P02,观察抽样脉冲及PCM编码数据。DDS信号源设置为正弦波状态(通常频率为2KHZ),调节W01电位器,改变正弦波幅度,并仔细观察PCM编码数据的变化。特别注意观察,当无信号输入时,或信号幅度为0时,:..PCM编码器编码为11010101或为01010101,并不是一般教材所讲授的编全0码。因为无信号输入时,或信号幅度为0经常出现,编全0码容易使系统失步。注意,本实验时钟为64KHZ,一帧中只能容纳1路信号。若用普通示波器要观察到稳定波形,通常正弦波频率设为2KHZ或1KHZ。(4)双踪示波器探头分别接在34P01和34P04,观察译码后的信号与输入正弦波是否一致。,模拟信号为正弦波的PCM编码数据观察:上述信号连接不变,将拨码器4SW02设置“01001”,则PCM的编码时钟为128KHZ。双踪示波器探头分别接在测量点34TP01和34P02,观察抽样脉冲及PCM编码数据。DDS信号源设置为正弦波状态(通常频率为2KHZ),调节W01电位器,改变正弦波幅度,并仔细观察PCM编码数据的变化。注意,此时时钟为128KHZ,一帧中能容纳2路信号。本PCM编码仅一路信号,故仅占用一帧中的一半时隙。用示波器观察34P01和34P04两点波形,比较译码后的信号与输入正弦波是否一致。、译码试听:将拨码器4SW02设置为“01111”,此时PCM编码时钟为64KHZ。用专用导线将P05(用户电话语音信号发送输出)与34P01(模拟信号的输入)连接;34P04(译码输出的模拟信号)与P14连接,34P02(编码输出)与34P03(译码输入)相连。对着用户电话话筒讲话,在扬声器中试听,直观感受PCM编码译码的效果()。:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。六、,画出实验过程中各测量点的波型图,注意对应相位、时序关系。(通常频率设为2KHZ或1KHZ,峰峰值0V~)的编码波形,读出正弦波的峰峰值及对应的编码数据(每组四个点,至少记录6-10组峰峰值及对应的编码数据);设计表格,记录实验数据并做分析,得出你的结论。,以及对本次实验有何改进意见。:..