文档介绍:该【广西南宁市天桃中学2022-2023学年数学九年级第一学期期末统考模拟试题含解析 】是由【286919636】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【广西南宁市天桃中学2022-2023学年数学九年级第一学期期末统考模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是( )
A. B. C. D.
2.已知是方程的一个解,则的值是( )
A.±1 B.0 C.1 D.-1
3.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是( )
A. B. C. D.
4.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:
x
…
﹣1
0
1
2
3
…
y
…
﹣2
3
6
7
6
…
当y<6时,x的取值范围是( )
A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>3
5.二次函数y=3(x+4)2﹣5的图象的顶点坐标为( )
A.(4,5) B.(﹣4,5) C.(4,﹣5) D.(﹣4,﹣5)
6.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是( )
A.4π B.1π C.π D.2π
7.如图,在矩形中,,对角线相交于点,垂直平分于点,则的长为( )
A.4 B. C.5 D.
8.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为( )
A.OF=CF B.AF=BF C. D.∠DBC=90°
9.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
10.已知抛物线经过和两点,则n的值为( )
A.﹣2 B.﹣4 C.2 D.4
11.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是( )
A.代入法 B.列举法 C.从特殊到一般 D.反证法
12.如图,A、B、C是⊙O上的三点,已知∠O=50°, 则∠C的大小是( )
A.50° B.45° C.30° D.25°
二、填空题(每题4分,共24分)
13.如图,在矩形中,点为的中点,交于点,连接,下列结论:
①;
②;
③;
④若,则.
其中正确的结论是______________.(填写所有正确结论的序号)
14.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.
15.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.
16.如图,把小圆形场地的半径增加5米得到大圆形场地,.
17.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.
18.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.
三、解答题(共78分)
19.(8分)先化简,再求值:·,其中满足
20.(8分)如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.
21.(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.
(1)求与的值;
(2)已知是轴上的一点,当时,求点的坐标.
22.(10分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.
(1)求点的坐标和反比例函数的解析式;
(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?
23.(10分)先化简,再求值的值,其中.
24.(10分)如图,已知中,,.求的面积.
25.(12分)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36º的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.
(1)如图2,请用两种不同的方法画出顶角为45º的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种) .
(2)如图3,△ABC 中,AC=2,BC=3,∠C=2∠B,请画出△ABC 的三分线,并求出三分线的长.
26.如图,在中,是内心,,是边上一点,以点为圆心,为半径的经过点,交于点.
(1)求证:是的切线;
(2)连接,若,,求圆心到的距离及的长.
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】连接BE,由题意可得点E是△ABC的内心,由此可得∠AEB=135°,为定值,确定出点E的运动轨迹是是弓形AB上的圆弧,此圆弧所在圆的圆心在AB的中垂线上,根据题意过圆心O作直径CD,则CD⊥AB,在CD的延长线上,作DF=DA,则可判定A、E、B、F四点共圆,继而得出DE=DA=DF,点D为弓形AB所在圆的圆心,设⊙O的半径为R,求出点C的运动路径长为,DA=R,进而求出点E的运动路径为弧AEB,弧长为,即可求得答案.
【详解】连结BE,
∵点E是∠ACB与∠CAB的交点,
∴点E是△ABC的内心,
∴BE平分∠ABC,
∵AB为直径,
∴∠ACB=90°,
∴∠AEB=180°-(∠CAB+∠CBA)=135°,为定值,,
∴点E的轨迹是弓形AB上的圆弧,
∴此圆弧的圆心一定在弦AB的中垂线上,
∵,
∴AD=BD,
如下图,过圆心O作直径CD,则CD⊥AB,
∠BDO=∠ADO=45°,
在CD的延长线上,作DF=DA,
则∠AFB=45°,
即∠AFB+∠AEB=180°,
∴A、E、B、F四点共圆,
∴∠DAE=∠DEA=°,
∴DE=DA=DF,
∴点D为弓形AB所在圆的圆心,
设⊙O的半径为R,
则点C的运动路径长为:,
DA=R,
点E的运动路径为弧AEB,弧长为:,
C、E两点的运动路径长比为:,
故选A.
【点睛】
本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.
2、A
【分析】利用一元二次方程解得定义,将代入得到,然后解关于的方程.
【详解】解:将代入得到,
解得
故选A
【点睛】
本题考查了一元二次方程的解.
3、C
【分析】先求出点B的坐标,再根据旋转图形的性质求得点的坐标
【详解】由题意,关于轴的对称点的坐标为(-1,-4),
如图所示,点绕原点逆时针旋转得到,过点B’作x轴的垂线,垂足为点C
则OC=4,B’C=1,
所以点B’的坐标为
故答案选:C.
【点睛】
本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.
4、D
【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.
【详解】∵当x=1时,y=6;当x=1时,y=6,
∴二次函数图象的对称轴为直线x=2,
∴二次函数图象的顶点坐标是(2,7),
由表格中的数据知,抛物线开口向下,
∴当y<6时,x<1或x>1.
故选D.
【点睛】
本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.
5、D
【分析】根据二次函数的顶点式即可直接得出顶点坐标.
【详解】∵二次函数
∴该函数图象的顶点坐标为(﹣4,﹣5),
故选:D.
【点睛】
本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式的顶点坐标为(h,k).
6、B
【分析】根据圆锥的侧面积,代入数进行计算即可.
【详解】解:圆锥的侧面积2π×1×1=1π.
故选:B.
【点睛】
本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.
7、B
【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.
【详解】解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=;
故选:B.
【点睛】
此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
8、A
【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.
【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正确;
∵点F不一定是OC的中点,
∴A错误.
故选:A.
【点睛】
本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.
9、B
【分析】根据抛物线的对称轴公式:计算即可.
【详解】解:抛物线y=x2+2x+3的对称轴是直线
故选B.
【点睛】
此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
10、B