文档介绍:该【内蒙古翁牛特旗乌丹第六中学2022-2023学年九年级数学第一学期期末达标测试试题含解析 】是由【1875892****】上传分享,文档一共【20】页,该文档可以免费在线阅读,需要了解更多关于【内蒙古翁牛特旗乌丹第六中学2022-2023学年九年级数学第一学期期末达标测试试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )
A.2 B. C. D.
2.若y=(2-m)是二次函数,则m等于( )
A.±2 B.2 C.-2 D.不能确定
3.参加一次聚会的每两人都握了一次手,所有人共握手10 次,若共有 x 人参加聚会,则根据题意,可列方程( )
A. B. C. D.
4.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
5.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B. C. D.
6.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为(    )
A.2cm B.3cm C.4cm D.1cm
7.下列判断错误的是( )
A.有两组邻边相等的四边形是菱形 B.有一角为直角的平行四边形是矩形
C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等
8.如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3 B.2 C. D.1
9.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为
A.6 B.12 C.12 D.16
10.已知一元二次方程,,则的值为( )
A. B. C. D.
11.如图,将△ABC绕着点A顺时针旋转30°得到△AB′C′,若∠BAC′=80°,则∠B′AC=( )‘
A.20° B.25° C.30° D.35°
12.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2017年底有贫困人口25万人,通过社会各界的努力,2019年底贫困人口减少至9万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x,根据题意可列方程( )
A.25(1﹣2x)=9 B.
C.9(1+2x)=25 D.
二、填空题(每题4分,共24分)
13.已知,二次函数的图象如图所示,当y<0时,x的取值范围是________.
14.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有__________米.
15.如图,正方形EFGH的四个顶点分别在正方形ABCD的四条边上,若正方形EFGH与正方形ABCD的相似比为,则()的值为_____.
16.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.
17.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=______.
18.在中,若,则是_____三角形.
三、解答题(共78分)
19.(8分)如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.
(1)证明:DP是⊙O的切线.
(2)若CD=3,求BD的长.
20.(8分)在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).
(1)求抛物线的表达式,并写出其顶点坐标;
(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.
21.(8分)(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?
22.(10分)某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.
为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?
如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?
23.(10分)已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):① 或② ;
(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.
(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.
24.(10分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.
(1)求证:四边形是菱形;
(2)若,,求的长.
25.(12分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.
(1)求证:是的切线;
(2)求图中阴影部分的面积.
26.如图,四边形ABCD中,对角线AC、BD相交于点O,且AD//BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F
(1)求证:四边形ABCD为平行四边形;
(2)求证:四边形BFDE为菱形.
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.
【详解】连接OA,
∵∠ABC=30°,
∴∠AOC=60°,
∵PA是圆的切线,
∴∠PAO=90°,
∵tan∠AOC =,
∴PA= tan60°×1=.
故选B.
【点睛】
本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.
2、C
【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可.
解答:解:根据二次函数的定义,得:m2-2=2
解得m=2或m=-2
又∵2-m≠0
∴m≠2
∴当m=-2时,这个函数是二次函数.
故选C.
3、C
【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.
【详解】设人参加了这次聚会,则每个人需握手次,
依题意,可列方程.
故选C.
【点睛】
本题主要考查一元二次方程的应用.
4、C
【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
5、C
【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;
故选C.
点睛:相似三角形的判定:两组角对应相等,两个三角形相似.
两组边对应成比例及其夹角相等,两个三角形相似.
三组边对应成比例,两个三角形相似.
6、A
【解析】试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.
解答:解:L=,
解R=2cm.
故选 A.
考点: 弧长的计算.
7、A
【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.
【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误;
B. 有一角为直角的平行四边形是矩形,故该选项正确;
C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;
D. 矩形的对角线互相平分且相等,故该选项正确;
故选:A.
【点睛】
本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.
8、C
【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=|k|,便可求得结果.
【详解】解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB,
而S△OAB=|k|=,
∴S△CAB=,
故选C.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
9、D
【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.
【详解】∵∠B=60°,AB=4,AC⊥AB,
∴AC=ABtan60°=4,
∴S△ABC=AB×AC=×4×4=8,
∴□ABCD的面积=2S△ABC=16
故选D.
【点睛】
此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.
10、B
【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.
【详解】解:由题可知p,q是方程的两根,
∴p+q=,
故选B.
【点睛】
本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.
11、A
【解析】根据图形旋转的性质,图形旋转前后不发生任何变化,对应点旋转的角度即是图形旋转的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,从而可得结论.
【详解】由旋转的性质可得,∠BAC=∠B′AC′,
∵∠C′AC=30°,
∴∠BAC=∠B′AC′=50°,
∴∠B′AC=20°.
故选A.
【点睛】
此题主要考查了旋转的性质,图形旋转前后不发生任何变化,这是解决问题的关键.
12、B
【分析】根据2017年贫困人口数×(1-平均下降率为)2=2019年贫困人口数列方程即可.
【详解】设年平均下降率为x,
∵2017年底有贫困人口25万人,2019年底贫困人口减少至9万人,
∴25(1-x)2=9,
故选:B.
【点睛】
本题考查由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1-x)2=b(a>b).
二、填空题(每题4分,共24分)
13、
【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.
【详解】解:如图所示,图象与x轴交于(-1,0),(1,0),
故当y<0时,x的取值范围是:-1<x<1.