文档介绍:该【浙江省乐清市育英寄宿学校2022-2023学年数学八年级第一学期期末达标检测试题含解析 】是由【xinyala】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【浙江省乐清市育英寄宿学校2022-2023学年数学八年级第一学期期末达标检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,把△ABC绕着点C顺时针旋转m°,得到△EDC,若点A、D、E在一条直线上, ∠ACB=n°,则∠ADC的度数是( )
A. B. C. D.
2.若关于的分式方程有增根,则的值是( )
A. B. C. D.
3.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为( )
A. B. C.4 D.5
4.下列各组数值是二元一次方程x﹣3y=4的解的是( )
A. B. C. D.
5.设,是实数,定义关于“*”的一种运算:.则下列结论正确的是( )
①若,则或;
②不存在实数,,满足;
③;
④若,则.
A.①②③ B.①③④ C.①②④ D.②③④
6.某手机公司接到生产万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机万部,可得方程,则题目中“…”处省略的条件应是( )
A.实际每月生产能力比原计划提高了,结果延期个月完成
B.实际每月生产能力比原计划提高了,结果提前个月完成
C.实际每月生产能力比原计划降低了,结果延期个月完成
D.实际每月生产能力比原计划降低了,结果提前个月完成
7.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )
甲组12户家庭用水量统计表
用水量(吨)
4
5
6
9
户数
4
5
2
1
A.甲组比乙组大 B.甲、乙两组相同
C.乙组比甲组大 D.无法判断
8.若是完全平方式,则常数k的值为( )
A.6 B.12 C. D.
9.如图,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 为 AC 上一点,将△ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是( )
A.5 B. C.3 D.
10.将分式中的x,y的值同时扩大为原来的3倍,则分式的值( )
A.扩大6倍 B.扩大9倍 C.不变 D.扩大3倍
二、填空题(每小题3分,共24分)
11.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.
12.(2015秋•端州区期末)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为 .
13.已知a+b=2,则a2﹣b2+4b的值为____.
14.要使成立,则__________
15.分解因式:2x3﹣6x2+4x=__________.
16.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=_____.
17.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
18.直线与直线平行,且经过点(﹣2,3),则= .
三、解答题(共66分)
19.(10分)计算
①
②
20.(6分)如图,是边长为的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于.
(1)若时,求的长;
(2)当时,求的长;
(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生变化,请说明理由.
21.(6分)如图,在中,,点是边上一点,垂直平分,交于点,交于点,连结,求证:.
22.(8分)先化简,再求值:
(1),其中x=﹣
(2),其中x=﹣1.
23.(8分)下面方格网的小方格是正方形,用无刻度直尺按要求作图:
(1)在图1中作直角∠ABC;
(2)在图2作AB的中垂线.
24.(8分)观察下列等式:
①32﹣31=2×31;②33﹣32=2×32;③34﹣33=2×33;④35﹣34=2×34…根据等式所反映的规律,解答下列问题:
(1)直接写出:第⑤个等式为 ;
(2)猜想:第n个等式为 (用含n的代数式表示),并证明.
25.(10分)先化简,再求值:,且x为满足﹣3<x<2的整数.
26.(10分)学校组织学生到距离学校5的县科技馆去参观,学生小明因事没能乘上学校的班车,于是准备在校门口乘出租车去县科技馆,出租车收费标准如下:
里程
收费/元
3以下(含3)
3以上(每增加1)
(1)出租车行驶的里程为(,为整数),请用的代数式表示车费元;
(2)小明身上仅有14元钱,够不够支付乘出租车到科技馆的车费?请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
【分析】根据旋转的性质即可得到∠ACD和∠CAD的度数,再根据三角形内角和定理进行解答即可.
【详解】∵将△ABC绕点C顺时针旋转m°得到△EDC.
∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE,
∴∠ACD=m°-n°,
∵点A,D,E在同一条直线上,
∴∠CAD=(180°-m°),
∵在△ADC中,∠ADC+∠DAC+∠DCA=180°,
∴∠ADC=180°-∠CAD-∠ACD
=180°-(180°-m°)-(m°-n°)
=90°+n°-m°
=(90+n-m)°,
故选:A.
【点睛】
本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,关键是根据旋转的性质和三角形内角和解答.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.
2、C
【分析】分式方程去分母转化为整式方程,将x=1代入计算即可求出m的值.
【详解】解:分式方程去分母得:,
将x=1代入的:m=-2,
故选C.
【点睛】
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
3、C
【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在
Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△BQD中,x2+32=(9﹣x)2,
解得:x=1.
故线段BQ的长为1.
故选:C.
【点睛】
此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
4、A
【解析】试题分析:A、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确;
B、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;
C、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;
D、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.
故选A
考点:二元一次方程的解.
5、B
【分析】根据新定义的运算,一一判断即可得出结论.
【详解】解:①∵a*b=0,
∴(a+b)2-(a-b)2=0,
a2+2ab+b2-a2-b2+2ab=0,
4ab=0,
∴a=0或b=0,故①正确;
②∵a*b=(a+b)2-(a-b)2=4ab,又a*b=a2+4b2,
∴a2+4b2=4ab,
∴a2-4ab+4b2=(a-2b)2=0,
∴a=2b时,满足条件,
∴存在实数a,b,满足a*b=a2+4b2;故②错误,
③∵a*(b+c)=(a+b+c)2-(a-b-c)2=4ab+4ac,
又∵a*b+a*c=4ab+4ac
∴a*(b+c)=a*b+a*c;故③正确.
④∵a*b=8,
∴4ab=8,
∴ab=2,
∴(10ab3)÷(5b2)=2ab=4;故④正确.
故选:B.
【点睛】
本题考查实数的运算、完全平方公式、整式的乘除运算等知识,解题的关键是灵活运用所学知识解决问题.
6、B
【分析】由代表的含义找出代表的含义,再分析所列方程选用的等量关系,即可找出结论.
【详解】设每月实际生产手机万部,则即表示:实际每月生产能力比原计划提高了,
∵方程,即,
其中表示原计划生产所需时间,表示实际生产所需时间,
∴原方程所选用的等量关系为:实际生产比原计划提前个月完成,
即实际每月生产能力比原计划提高了,结果提前个月完成.
故选:B.
【点睛】
本题考查了分式方程的应用,根据所列分式方程,找出选用的等量关系是解题的关键.
7、B
【解析】根据中位数定义分别求解可得.
【详解】由统计表知甲组的中位数为 =5(吨),
乙组的4吨和6吨的有12×=3(户),7吨的有12×=2户,
则5吨的有12-(3+3+2)=4户,
∴乙组的中位数为=5(吨),
则甲组和乙组的中位数相等,
故选:B.
【点睛】
考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.
8、D
【解析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,
∴kab=±2⋅2a⋅3b,
解得k=±12.
故选D.
9、C
【分析】根据勾股定理易求BC=1.根据折叠的性质有AB=BE,AD=DE,∠A=∠DEB=90°,
在△CDE中,设AD=DE=x,则CD=8-x,EC=1-6=2.根据勾股定理可求x,在△ADE中,运用勾股定理求BD.
【详解】解:∵∠A=90°,AB=6,AC=8,
∴BC=1.
根据折叠的性质,AB=BE,AD=DE,∠A=∠DEB=90°.
∴EC=1-6=2.
在△CDE中,设AD=DE=x,则CD=8-x,根据勾股定理得
(8-x)2=x2+22.
解得x=4.
∴DE=4.
∴BD==4,故选C.
【点睛】
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.
10、B
【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.
【详解】解:∵把分式中的x与y同时扩大为原来的3倍,
∴原式变为:= =9×,
∴这个分式的值扩大9倍.
故选:B.
【点睛】
本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
二、填空题(每小题3分,共24分)
11、
【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;
②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.
【详解】
∵E是BC的中点,
∴BE=CE=BC=9,
∵AD∥BC,
∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,
则得:9−3t=5−t,
解得:t=2,
②当Q运动到E和B之间时,设运动时间为t,
则得:3t−9=5−t,
解得:t=;
∴,以点P,Q,E,D为顶点的四边形是平行四边形.
故答案为:.
【点睛】
本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.
12、22cm