文档介绍:该【数量关系测试题带答案(预热题) 】是由【金】上传分享,文档一共【107】页,该文档可以免费在线阅读,需要了解更多关于【数量关系测试题带答案(预热题) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。数量关系测试题
第一部分 单选题(300题)
1、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?( )
A、
B、1
C、
D、2
【答案】:答案:C
解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,。故选C。
2、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是( )。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。
3、1,3,10,37,( )
A、112
B、144
C、148
D、158
【答案】:答案:B
解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故选B。
4、145,120,101,80,65,( )
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。
5、21,27,40,61,94,148,( )
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。
6、2,12,40,112,( )
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。
7、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?( )
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。
8、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?( )
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。
9、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅( )套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。
10、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。
11、超市有一批酒需要入库,单独干这项工作,小明需要15小时,小军需要18小时。如果小明和小军一起干了5小时后,剩下的由小军独自完成,若这时小军的效率提高40%,则还需要几小时才能完成?( )
A、5
B、17
C、12
D、11
【答案】:答案:A
解析:设总工作量为90,则小明的效率为6,小军的效率为5。开始时两人合作了5个小时,共完成工作量 (6+5)×5=55,还剩90-55=35。这时小军的效率为5×(1+40%)=7,剩下的工作小军还需35÷7=5小时才能完成。故选A。
12、6,21,43,72,( )
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。
13、老王和老赵分别参加4门培训课的考试,两人的平均分数分别为82和90分,单人的每门成绩都为整数且彼此不相等。其中老王成绩最高的一门和老赵成绩最低的一门课分数相同,问老赵成绩最高的一门课最多比老王成绩最低的一门课高多少分?( )
A、20
B、22
C、24
D、26
【答案】:答案:D
解析:最值问题中构造数列。老赵4门比老王高(90-82)×4=32分。由于老王的成绩最高的一门和老赵成绩最低的一门相等,而每人的各个成绩都不相等,求老赵最高的一门最多比老王成绩最低的一门高多少分,则应该使老赵的其他两门分数尽可能低,而老王的其他两门分数尽可能高,则可设老王的第三高分数为x,则第二高的分数为x+1,则最高分数为x+2,等于老赵最低的分数x+2,则老赵第三高分数为x+3,第二高分数为x+4,构造完数列后,可以得到老赵的三课的分数比老王高6分,一共高32分,所以老赵最高的一门最多比老王成绩最低的一门高32-6=26分。故选D。
14、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需要x小时,则x满足的方程为( )。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为y/3公里/时,逆水速度为y/4公里/时。由水速=水速度-静水速度=静水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故选A。考点点拨:解决流水问题的关键在于找出船速、水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知量。故选A。
15、7,21,14,21,63,( ),63
A、35
B、42
C、40
D、56
【答案】:答案:B
解析:三个一组,7、21、14中第二个数是第一个数和第三个数的和,即所填数字为63-21=42。故选B。
16、95,88,71,61,50,( )
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故选A。
17、甲和乙两个公司2014年的营业额相同。2015年乙公司受店铺改造工程影响,营业额比上年下降300万元。而甲公司则引入电商业务,营业额比上年增长600万元,正好是乙公司2015年营业额的3倍。则2014年两家公司的营业额之和为多少万元?( )
A. 900
B. 1200
C. 1500
D. 1800
【答案】:答案:C
解析:设2014年两家公司营业额为x万元,由题意可得万元,则2014年两家公司营业额为故正确答案为C。
18、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是( )。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,。因此前半段时间走过的路程为90+9×(-9)=,后半段时间走过的路程为9×=。:=21:19。故选B。
19、2,5,9,19,37,75,( )
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。
20、小王登山,上山的速度是4km/h,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为( )km/h。
A、5
B、
C、
D、
【答案】:答案:B
解析:平均速度为总路程除以总时间,即(2×9)÷(9÷4+9÷6)=。故选B。
21、13×99+135×999+1357×9999的值是( )。
A、13507495
B、13574795
C、13704675
D、13704795
【答案】:答案:D
解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故选D。
22、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ( )
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。
23、6,9,10,14,17,21,27,( )
A、28
B、29
C、30
D、31
【答案】:答案:C
解析:依次将奇数项做差得10-6=4、17-10=7、27-17=10,4、7、10构成公差为3的等差数列;又依次将偶数项做差得14-9=5、21-14=7,若加入9则5、7、9可构成公差为2的等差数列,即所填数字为21+9=30。故选C。
24、8,3,17,5,24,9,26,18,30,( )
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,(55=30+25)。故选B。
25、3,2,2,5,17,( )
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。
26、2,2,6,14,34,( )
A、82
B、50
C、48
D、62
【答案】:答案:A
解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。
27、-7,0,1,2,9,( )
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。
28、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是( )。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。