文档介绍:该【2025年多模态遥感数据智能处理关键技术及典型应用 】是由【小屁孩】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【2025年多模态遥感数据智能处理关键技术及典型应用 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。 : .
博学之,审问之,慎思之,明辨之,笃行之。——《礼记》
多模态遥感数据智能处理关键技术及典型应用
英文版
Key Technologies and Typical Applications of Intelligent
Processing of Multimodal Remote Sensing Data
Abstract:
With the rapid advancement of remote sensing technology,
multimodal remote sensing data has become increasingly
prevalent. This article explores the key technologies involved in
intelligent processing of such data and highlights its typical
applications.
1. Introduction:
Multimodal remote sensing refers to the integration of data
from different sensors, platforms, and resolutions to provide a
comprehensive understanding of the Earth's surface. The
intelligent processing of these data offers unprecedented
opportunities for monitoring, mapping, and decision-making.
2. Key Technologies: : .
饭疏食,饮水,曲肱而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。——《论语》
Data Fusion: It combines data from different sources to
create a unified representation, enhancing the information
content and accuracy.
Machine Learning: Algorithms like deep learning and
support vector machines are used to extract meaningful
patterns and features from the data.
Big Data Analytics: Processing vast amounts of data requires
efficient algorithms and high-performance computing resources.
3. Typical Applications:
Environmental Monitoring: Monitoring air quality, climate
change, and deforestation are key applications of multimodal
remote sensing.
Urban Planning: Mapping urban areas, traffic patterns, and
infrastructure development assist planners in making informed
decisions.
Disaster Management: Early detection of disasters like floods
and earthquakes saves lives and reduces damage.
4. Conclusion: : .
其身正,不令而行;其身不正,虽令不从。——《论语》
The intelligent processing of multimodal remote sensing
data offers immense potential in various fields. Future research
should focus on enhancing the accuracy, efficiency, and
scalability of these technologies.
中文版
多模态遥感数据智能处理关键技术及典型应用
摘要:
随着遥感技术的飞速发展,多模态遥感数据变得越来越普遍。本文
探讨了多模态遥感数据智能处理所涉及的关键技术,并突出了其典型
应用。
1. 引言:
多模态遥感是指整合来自不同传感器、平台和分辨率的数据,以提
供对地球表面的全面理解。对这些数据的智能处理为监测、制图和决
策提供了前所未有的机会。
2. 关键技术:
数据融合: 将来自不同来源的数据结合起来,创建统一的表示形
式,从而增强信息内容和准确性。 : .
英雄者,胸怀大志,腹有良策,有包藏宇宙之机,吞吐天地之志者也。——《三国演义》
机器学习: 使用深度学习、支持向量机等算法从数据中提取有意
义的模式和特征。
大数据分析: 处理大量数据需要高效的算法和高性能计算资源。
3. 典型应用:
环境监测: 监测空气质量、气候变化和森林砍伐是多模态遥感的
关键应用。
城市规划: 绘制城市地区、交通模式和基础设施发展的地图,协
助规划人员做出明智的决策。
灾害管理: 灾害的早期检测,如洪水和地震,可以挽救生命并减
少损害。
4. 结论:
多模态遥感数据的智能处理在各个领域具有巨大的潜力。未来的研
究应重点提高这些技术的准确性、效率和可扩展性。