文档介绍:该【七年级下学期期末几何压轴题测试数学试题培优试卷 】是由【知识徜徉土豆】上传分享,文档一共【47】页,该文档可以免费在线阅读,需要了解更多关于【七年级下学期期末几何压轴题测试数学试题培优试卷 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、解答题
1.在平面直角坐标系中,点坐标为,点坐标为,过点作直线轴,垂足为,交线段于点.
(1)如图1,过点作,垂足为,连接.
①填空:的面积为______;②点为直线上一动点,当时,求点的坐标;
(2)如图2,点为线段延长线上一点,连接,,线段交于点,若,请直接写出点的坐标为______.
2.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
3.如图,已知,是的平分线.
(1)若平分,求的度数;
(2)若在的内部,且于,求证:平分;
(3)在(2)的条件下,过点作,分别交、于点、,绕着
点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.
4.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
5.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
6.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
7.阅读材料:求1+2+22+23+24+…+22017的值.
解:设S=1+2+22+23+24+…+22017,
将等式两边同时乘以2得:
2S=2+22+23+24+…+22017+22018
将下式减去上式得2S-S=22018-1即S=22018-1
即1+2+22+23+24+…+22017=22018-1
请你仿照此法计算:
(1)1+2+22+23+…+29=_____;
(2)1+5+52+53+54+…+5n(其中n为正整数);
(3)1+2×2+3×22+4×23+…+9×28+10×29.
8.先阅读材料,再解答问题:
我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:
(1)我们知道,,那么,请你猜想:59319的立方根是_______位数
(2)在自然数1到9这九个数字中,________,________,________.
猜想:59319的个位数字是9,则59319的立方根的个位数字是________.
(3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.
(4)现在换一个数103823,你能按这种方法得出它的立方根吗?
9.[阅读材料]
∵,即,∴,∴的整数部分为1,∴的小数部分为
[解决问题]
(1)填空:的小数部分是__________;
(2)已知是的整数部分,是的小数部分,求代数式的平方根为______.
10.观察下列各式,并用所得出的规律解决问题:
(1),,,……
,,,……
由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.
(2)已知,,则_____;______.
(3),,,……
小数点的变化规律是_______________________.
(4)已知,,则______.
11.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.
(1)请直接写出最小的四位依赖数;
(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.
(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色数”的F(m)的最大值.
12.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.
(1)图2中A、B两点表示的数分别为___________,____________;
(2)请你参照上面的方法:
①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙)
②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长)
13.如图,已知点,点,且,满足关系式.
(1)求点、的坐标;
(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、.试探究,之间的数量关系;
(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段.若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标.
14.如图1,点在直线、之间,且.
(1)求证:;
(2)若点是直线上的一点,且,平分交直线于点
,若,求的度数;
(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).
15.在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;
(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系
16.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”.
(1)在点,,中,原点的“距点”是_____(填字母);
(2)已知点,点,过点作平行于轴的直线.
①当时,直线上点的“距点”的坐标为_____;
②若直线上存在点的“点”,求的取值范围.
(3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围.
17.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.
(1)点F的坐标为 ;
(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.
①求t为何值时,AP所在直线垂直于x轴;
②求t为何值时,S=S△APE.
18.如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为At,Bt.
(1)直接写出A1,B1,At,Bt的坐标(用含n、t的式子表示);
(2)以下判断正确的是 .
A.经过n次操作,点A,点B位置互换
B.经过(n﹣1)次操作,点A,点B位置互换
C.经过2n次操作,点A,点B位置互换
D.不管几次操作,点A,点B位置都不可能互换
(3)t为何值时,At,B两点位置距离最近?
19.学校将20××年入学的学生按入学年份、年级、班级、班内序号的顺序给每一位学生编号,如2015年入学的8年级3班的46号学生的编号为15080346.张山同学模仿二维码的方式给学生编号设计了一套身份识别系统,在5×5的正方形风格中,黑色正方形表示数字1,白色正方形表示数字0. 我们把从上往下数第i行、从左往右数第j列表示的数记为aij,(其中,i、j=1,2,3,4,5),规定Ai=16ai1+8ai2+4ai3+2ai4+ai5.
(1)若A1表示入学年份,A2表示所在年级,A3表示所在班级,A4表示编号的十位数字,A5表示编号的个位数字.
①图1是张山同学的身份识别图案,请直接写出张山同学的编号;
②请在图2中画出2018年入学的9年级5班的39号同学的身份识别图案;
(2)张山同学又设计了一套信息加密系统,其中A1表示入学年份加8,A2表示所在年级的数减6再加上所在班级的数,A3表示所在年级的数乘2后减3再减所在班级的数,将编号(班内序号)的末两位单列出来,作为一个两位数,个位与十位数字对换后再加2,所得结果的十位数字用A4表示、个位数字用A5表示.例如:2018年9年级5班的39号同学,其加密后的身份识别图案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份识别(26081095)图案如图3所示.图4是李思同学加密后的身份识别图案,请求出李思同学的编号.
20.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.
(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);
(2)已知h(x)=ax3+2x2-ax-6,当h()=a,求a的值;
(3)已知f(x)=--2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值.
21.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.
22.某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元.
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.
23.在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+b﹣2|+=0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,D.
(1)请直接写出A、B、C、D四点的坐标.
(2)点E在坐标轴上,且S△BCE=S四边形ABDC,求满足条件的点E的坐标.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在线段BD上移动时(不与B,D重合)求:的值.
24.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆
(1)学校准备租用辆客车,有几种租车方案?
(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?
(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案
25.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x的代数式,当-1£x£ 1时,代数式在x=±1时有最大值,最大值为1;在x=0时有最小值,最小值为0,此时最值1,0均在-1£x£1这个范围内,则称代数式是-1£x£1的“湘一代数式”.
(1)若关于的代数式,当时,取得的最大值为 ,最小值为 ,所以代数式 (填“是”或“不是”)的“湘一代数式”.
(2)若关于的代数式是的“湘一代数式”,求a的最大值与最小值.
(3)若关于的代数式是的“湘一代数式”,求m的取值范围.
26.如图,正方形ABCD的边长是2厘米,E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒.
(1)当时, 平方厘米;当时, 平方厘米;
(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;
(3)若的面积为平方厘米,直接写出值.
27.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.
例:已知方程2x﹣3=1与不等式x+3>0,当x=2时,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同时成立,则称x=2是方程2x﹣3=1与不等式x+3>0的“理想解”.
(1)已知①,②2(x+3)<4,③<3,试判断方程2x+3=1的解是否是它们中某个不等式的“理想解”,写出过程;
(2)若是方程x﹣2y=4与不等式的“理想解”,求x0+2y0的取值范围.
28.在平面直角坐标系中,点,,,且,,满足.
(1)请用含的式子分别表示,两点的坐标;
(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;
(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围.
29.如图,在平面直角坐标系中,已知,,,,满足