文档介绍:该【2024年人教版中学七7年级下册数学期末质量检测试卷(附答案) 】是由【海洋里徜徉知识】上传分享,文档一共【26】页,该文档可以免费在线阅读,需要了解更多关于【2024年人教版中学七7年级下册数学期末质量检测试卷(附答案) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2024年人教版中学七7年级下册数学期末质量检测试卷(附答案)
一、选择题
1.如图,下列说法不正确的是( )
A.∠1与∠3是对顶角 B.∠2与∠6是同位角
C.∠3与∠4是内错角 D.∠3与∠5是同旁内角
2.在下面的四幅图案中,能通过图案(1)平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点A(1,﹣2021)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a2的算术平方根是a;④的立方根是4.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )
A.35° B.45° C.50° D.55°
6.下列说法错误的是( )
A.-8的立方根是-2 B.
C.的相反数是 D.3的平方根是
7.如图,已知直线,的平分线交于点F,,则等于( )
A. B. C. D.
8.如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,……,按照这样的运动规律,点第2021次运动到点( )
A. B. C. D.
九、填空题
9.的算术平方根为_______;
十、填空题
10.已知点,点关于x轴对称,则的值是____.
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
十三、填空题
13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______.
十四、填空题
14.[x)表示小于x的最大整数,如[)=2,[4)=5,则下列判断:①[)=;②[x)x有最大值是0;③[x)x有最小值是1;④x[x)x,其中正确的是__________ (填编号).
十五、填空题
15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__.
十六、填空题
16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.
十七、解答题
17.(1)
(2)
(3)
十八、解答题
18.已知m+n=2,mn=-15,求下列各式的值.
(1);
(2).
十九、解答题
19.完成下列证明:
已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接
EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF∥AC交EG的延长线于点F.求证:∠E=∠F.
证明:∵AD平分∠BAC(已知),
∴∠1=∠2( ),
又∵∠ADC+∠EGD=180°(已知),
∴EF∥ (同旁内角互补,两直线平行).
∴∠1=∠E(两直线平行,同位角相等),∠2=∠3( ).
∴∠E= (等量代换).
又∵AC∥DF(已知),
∴∠3=∠F( ).
∴∠E=∠F(等量代换).
二十、解答题
20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,
(1)公交车站的坐标是 ,宠物店的坐标是 ;
(2)在图中标出公园,书店的位置;
(3)将医院的位置怎样平移得到人寿保险公司的位置.
二十一、解答题
21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分.
请解答下列问题:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b-的值;
(3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.如图,用两个边长为10的小正方形拼成一个大的正方形.
(1)求大正方形的边长?
(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?
二十三、解答题
23.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
二十四、解答题
24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.
(1)求证:EF∥MN;
(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;
(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.
二十五、解答题
25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角;内错角定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同位角定义:两条直线被第三条直线所截,两个角分别在两条被截线同一方,并且都在截线的同侧,具有这样位置关系的一对角叫做同位角;同旁内角定义:两条直线被第三条直线所截,若两个角都在两直线之间,并且在截线的同侧,则这样的一对角叫做同旁内角;进行分析判断即可.
【详解】
解答:解:A、∠1与∠3是对顶角,
故原题说法正确,不符合题意;
B、∠2与∠6不是同位角,
故原题说法错误,符合题意;
C、∠3与∠4是内错角,
故原题说法正确,不符合题意;
D、∠3与∠5是同旁内角,
故原题说法正确,不符合题意;
故选:B.
【点睛】
此题主要考查了对顶角、内错角、同位角、同旁内角,关键是掌握这几种角的定义.
2.C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题
解析:C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题意;
C、可通过平移得到,符合题意;
D、对应点的连线相交,不能通过平移得到,不符合题意;
故选:C.
【点睛】
本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:∵点A(1,-2021),
∴A点横坐标是正数,纵坐标是负数,
∴A点在第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.
【详解】
解:①连接两点之间的线段的长度叫做这两点间的距离
,故原命题错误,是假命题,符合题意;
②经过直线外一点,有且只有一条直线与这条直线平行,
正确,是真命题,不符合题意;
③a2的算术平方根是a(a≥0),
故原命题错误,是假命题,符合题意;
④的立方根是2,
故原命题错误,是假命题,符合题意;
假命题有3个,
故选:C.
【点睛】
本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.
5.A
【分析】
过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.
【详解】
解:过点E作EF∥AB,则EF∥CD,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.B
【分析】
根据平方根以及立方根的概念进行判断即可.
【详解】
A、-8的立方根为-2,这个说法正确;
B、|1-|=-1,这个说法错误;
C.-的相反数是,这个说法正确;
D、3的平方根是±,这个说法正确;
故选B.
【点睛】
本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.
7.B
【分析】
根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论.
【详解】
解:∵,
∴,,
∵的平分线交于点F,
∴,
∴,
∴,
故选:B.
【点睛】
本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键.
8.A
【分析】
令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4
解析:A
【分析】
令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1)”,根据该规律即可得出结论.
【详解】
解:令P点第n次运动到的点为Pn点(n为自然数).
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,−1),P4(4,0),P5(5,1),…,
∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1).
∵2021=505×4+1,
∴P第2021次运动到点(2021,1).
故选:A.
【点睛】
本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.
九、填空题