1 / 21
文档名称:

上海市市西初级中学2022-2023学年高考数学三模试卷含解析.doc

格式:doc   大小:2,291KB   页数:21页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

上海市市西初级中学2022-2023学年高考数学三模试卷含解析.doc

上传人:hezhihe 2025/4/9 文件大小:2.24 MB

下载得到文件列表

上海市市西初级中学2022-2023学年高考数学三模试卷含解析.doc

相关文档

文档介绍

文档介绍:该【上海市市西初级中学2022-2023学年高考数学三模试卷含解析 】是由【hezhihe】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【上海市市西初级中学2022-2023学年高考数学三模试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平行六面体中,M为与的交点,若,,则与相等的向量是( )
A. B. C. D.
2.已知复数,则对应的点在复平面内位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3.在复平面内,复数(为虚数单位)对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.若直线与圆相交所得弦长为,则( )
A.1 B.2 C. D.3
5.为虚数单位,则的虚部为( )
A. B. C. D.
6.函数的对称轴不可能为( )
A. B. C. D.
7.设函数,当时,,则( )
A. B. C.1 D.
8.执行程序框图,则输出的数值为( )
A. B. C. D.
9.某四棱锥的三视图如图所示,该几何体的体积是( )
A.8 B. C.4 D.
10.圆心为且和轴相切的圆的方程是( )
A. B.
C. D.
11.下列与函数定义域和单调性都相同的函数是( )
A. B. C. D.
12.已知向量,则是的( )
A.充分不必要条件 B.必要不充分条件
C.既不充分也不必要条件 D.充要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数若关于的不等式的解集是,则的值为_____.
14.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____cm3.
15.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.
16.如图,在矩形中,,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”,统计结果及对应的频率分布直方图如下所示:
等级
不合格
合格
得分
频数
6
24
(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?
是否合格
性别
不合格
合格
总计
男生
女生
总计
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;
(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
附表及公式:,其中.
18.(12分)已知函数
(1)解不等式;
(2)若均为正实数,且满足,为的最小值,求证:.
19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.
(1)求直线CM与平面PAB所成角的正弦值;
(2)求二面角D-AP-B的余弦值;
(3)试判断直线MN与平面PAB的位置关系,并给出证明.
20.(12分)已知椭圆()的离心率为,且经过点.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.
21.(12分)已知直线是曲线的切线.
(1)求函数的解析式,
(2)若,证明:对于任意,有且仅有一个零点.
22.(10分)已知等腰梯形中(如图1),,,为线段的中点,、为线段上的点,,现将四边形沿折起(如图2)
(1)求证:平面;
(2)在图2中,若,求直线与平面所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
根据空间向量的线性运算,用作基底表示即可得解.
【详解】
根据空间向量的线性运算可知
因为,,

即,
故选:D.
【点睛】
本题考查了空间向量的线性运算,用基底表示向量,属于基础题.
2、A
【解析】
利用复数除法运算化简,由此求得对应点所在象限.
【详解】
依题意,对应点为,在第一象限.
故选A.
【点睛】
本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.
3、C
【解析】
化简复数为、的形式,可以确定对应的点位于的象限.
【详解】
解:复数
故复数对应的坐标为位于第三象限
故选:.
【点睛】
本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.
4、A
【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.
【详解】
圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.
故选:A
【点睛】
本题考查了根据垂径定理求解直线中参数的方法,属于基础题.
5、C
【解析】
利用复数的运算法则计算即可.
【详解】
,故虚部为.
故选:C.
【点睛】
本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.
6、D
【解析】
由条件利用余弦函数的图象的对称性,得出结论.
【详解】
对于函数,令,解得,
当时,函数的对称轴为,,.
故选:D.
【点睛】
本题主要考查余弦函数的图象的对称性,属于基础题.
7、A
【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.
【详解】

时,,,∴,
由题意,∴.
故选:A.
【点睛】
本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.
8、C
【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.
【详解】
,,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,不满足条件,
输出.
故选:C
【点睛】
本题主要考查程序框图中的循环结构,属于简单题.
9、D
【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.
【详解】
根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:
结合图中数据知,该四棱锥底面为对角线为2的正方形,
高为PA=2,
∴四棱锥的体积为.
故选:D.
【点睛】
本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.
10、A
【解析】
求出所求圆的半径,可得出所求圆的标准方程.
【详解】
圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.
故选:A.
【点睛】
本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.
11、C
【解析】
分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.
【详解】
函数的定义域为,在上为减函数.
A选项,的定义域为,在上为增函数,不符合.
B选项,的定义域为,不符合.
C选项,的定义域为,在上为减函数,符合.
D选项,的定义域为,不符合.
故选:C
【点睛】
本小题主要考查函数的定义域和单调性,属于基础题.
12、A
【解析】
向量,,,则,即,或者-1,判断出即可.
【详解】
解:向量,,
,则,即,
或者-1,
所以是或者的充分不必要条件,
故选:A.
【点睛】