1 / 21
文档名称:

云南省大理、丽江、怒江2022-2023学年高三冲刺模拟数学试卷含解析.doc

格式:doc   大小:1,566KB   页数:21页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

云南省大理、丽江、怒江2022-2023学年高三冲刺模拟数学试卷含解析.doc

上传人:zhimenshu 2025/4/9 文件大小:1.53 MB

下载得到文件列表

云南省大理、丽江、怒江2022-2023学年高三冲刺模拟数学试卷含解析.doc

相关文档

文档介绍

文档介绍:该【云南省大理、丽江、怒江2022-2023学年高三冲刺模拟数学试卷含解析 】是由【zhimenshu】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【云南省大理、丽江、怒江2022-2023学年高三冲刺模拟数学试卷含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在中所对的边分别是,若,则( )
A.37 B.13 C. D.
2.函数()的图象的大致形状是( )
A. B. C. D.
3.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则( )
A. B.
C. D.
4.已知x,y满足不等式组,则点所在区域的面积是( )
A.1 B.2 C. D.
5.将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:
①它的图象关于直线x=对称;
②它的最小正周期为;
③它的图象关于点(,1)对称;
④它在[]上单调递增.
其中所有正确结论的编号是( )
A.①② B.②③ C.①②④ D.②③④
6.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为
A. B.
C. D.
7.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
8.已知平面向量,,满足:,,则的最小值为( )
A.5 B.6 C.7 D.8
9.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=( )
A.﹣21 B.﹣24 C.85 D.﹣85
10.若2m>2n>1,则( )
A. B.πm﹣n>1
C.ln(m﹣n)>0 D.
11.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)( )
A.12个月的PMI值不低于50%的频率为
B.12个月的PMI值的平均值低于50%
C.%
D.%
12.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.
14.在四面体中, 分别是的中点.则下述结论:
①四面体的体积为;
②异面直线所成角的正弦值为;
③四面体外接球的表面积为;
④若用一个与直线垂直,且与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为.
其中正确的有_____.(填写所有正确结论的编号)
15.已知实数,且由的最大值是_________
16.己知函数,若曲线在处的切线与直线平行,则
__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)讨论的单调性;
(2)当时,证明:.
18.(12分)已知函数.
(1)求不等式的解集;
(2)设的最小值为,正数,满足,证明:.
19.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若点P的极坐标为,,求的值.
20.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:
一周课外读书时间/
合计
频数
4
6
10
12
14
24
46
34
频率








1
(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.
(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.
①求每层应抽取的人数;
②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.
21.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作
.设.
(1)用表示线段并确定的范围;
(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.
22.(10分)已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
直接根据余弦定理求解即可.
【详解】
解:∵,
∴,
∴,
故选:D.
【点睛】
本题主要考查余弦定理解三角形,属于基础题.
2、C
【解析】
对x分类讨论,去掉绝对值,即可作出图象.
【详解】

故选C.
【点睛】
识图常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;
(2)定量计算法:通过定量的计算来分析解决问题;
(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.
3、D
【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.
【详解】
是偶函数,,
而,因为在上递减,

即.
故选:D
【点睛】
本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.
4、C
【解析】
画出不等式表示的平面区域,计算面积即可.
【详解】
不等式表示的平面区域如图:
直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.
故选:C.
【点睛】
本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.
5、B
【解析】
根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.
【详解】
因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,
函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;
令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;
令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;
令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;
故选:B
【点睛】
本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型
6、B
【解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.
7、D
【解析】
根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.
【详解】
由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,.
【点睛】
本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.
8、B
【解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.
【详解】
建立平面直角坐标系如下图所示,设,,且,由于,所以.
.所以
,即.
.当且仅当时取得最小值,此时由得,当时,有最小值为,即,,.
故选:B
【点睛】
本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.
9、D
【解析】
由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.
【详解】
设等比数列{an}的公比为q,
∵a5=16,a3a4=﹣32,
∴a1q4=16,a12q5=﹣32,
∴q=﹣2,则,
则,
故选:D.
【点睛】
本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.
10、B
【解析】
根据指数函数的单调性,结合特殊值进行辨析.
【详解】
若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;
而当m,n时,检验可得,A、C、D都不正确,
故选:B.
【点睛】
此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.
11、D
【解析】
根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.
【详解】
对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;
对B,由图可以看出,PMI值的平均值低于50%,故B正确;
对C,%,故C正确,;
对D,%,故D错误
故选:D.
【点睛】
本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.
12、B
【解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,
④利用集合间的包含关系判断.
【详解】
若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;

最近更新

2025-2030年中国汽流回收机行业深度研究分析报.. 28页

建筑施工现场安全管理的注意事项精品教案 4页

CARI621-2012-人力资源控制程序 10页

完全平方公式练习题 4页

九峰山温泉池水处理方案 20页

2025-2030年中国显微注射针行业市场现状分析及.. 22页

企业间合同借支范本 7页

2017-2018学年高一政治上册课时随堂检测36 12页

企业车辆租赁合同范本度 7页

2025-2030年中国彩色超细旦纤维项目投资可行性.. 28页

2025-2030年中国废旧电池回收行业市场运营态势.. 22页

2025-2030年中国天然鳞片中碳石墨行业深度研究.. 38页

2025年企业迎新员工策划方案 25页

无锡市建设工程招标投标管理办法 9页

2025-2030年中国各种导轨项目投资可行性研究分.. 47页

美发助理规章制度 3页

2025年以让我感动的一件事为题五年级作文 5页

2025年以梦想为主题的素材高考作文 10页

贵州省贵阳六中2016届高三物理上册期中试题 17页

房地产收银工作总结 3页

初中化学第八章知识点 2页

2025年仓管员安全岗位职责 14页

2025年仓库岗位职责怎么写范文简短 19页

2025年介绍春节的方案500字 9页

2025年今天距离高考还有几天 4页

零售卖场关键性指标 3页

2025年人教版六年级下册语文第四单元知识点 18页

2025-2030年中国不锈钢餐具行业市场行情监测及.. 22页

各部岗位考核标准 32页

针灸大成原文及翻译 24页