1 / 19
文档名称:

四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题含解析.doc

格式:doc   大小:1,614KB   页数:19页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题含解析.doc

上传人:zhimenshu 2025/4/9 文件大小:1.58 MB

下载得到文件列表

四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题含解析.doc

相关文档

文档介绍

文档介绍:该【四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题含解析 】是由【zhimenshu】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。四川省眉山市青神县青神中学2024年高三数学第一学期期末达标检测试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在上的函数满足,且当时,,则方程的最小实根的值为( )
A. B. C. D.
2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则( ).
A. B. C. D.
3.函数的部分图像大致为( )
A. B.
C. D.
4.已知数列的通项公式是,则( )
A.0 B.55 C.66 D.78
5.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
6.下列函数中,既是奇函数,又是上的单调函数的是( )
A. B.
C. D.
7.已知等边△ABC内接于圆:x2+ y2=1,且P是圆τ上一点,则的最大值是( )
A. B.1 C. D.2
8.设为等差数列的前项和,若,,则的最小值为( )
A. B. C. D.
9.各项都是正数的等比数列的公比,且成等差数列,则的值为(  )
A. B.
C. D.或
10.如图,在中,点,分别为,的中点,若,,且满足,则等于( )
A.2 B. C. D.
11.在等差数列中,,,若(),则数列的最大值是( )
A. B.
C.1 D.3
12.要得到函数的图像,只需把函数的图像( )
A.向左平移个单位 B.向左平移个单位
C.向右平移个单位 D.向右平移个单位
二、填空题:本题共4小题,每小题5分,共20分。
13.已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_________.
14.已知非零向量,满足,且,则与的夹角为____________.
15..
16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷
体育迷
合计


10
55
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k)


k


18.(12分)设函数.
(1)解不等式;
(2)记的最大值为,若实数、、满足,求证:.
19.(12分)已知函数.
(1)解不等式;
(2)若函数的最小值为,求的最小值.
20.(12分)已知函数,.
(1)当时,求不等式的解集;
(2)当时,不等式恒成立,求实数的取值范围.
21.(12分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).
(1)求证:四边形是平行四边形;
(2)求证:与不垂直;
(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.
22.(10分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.
【详解】
当时,,所以,故当
时,,所以,而
,所以,又当时,
的极大值为1,所以当时,的极大值为,设方程
的最小实根为,,则,即,此时
令,得,所以最小实根为411.
故选:C.
【点睛】
本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.
2、B
【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.
【详解】
因为终边上有一点,所以,
故选:B
【点睛】
此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.
3、A
【解析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.
【详解】
解:因为,
所以的定义域为,
则,
∴为偶函数,图象关于轴对称,排除选项,
且当时,,排除选项,所以正确.
故选:A.
【点睛】
本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.
4、D
【解析】
先分
为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.
【详解】
解:由题意得,当为奇数时,,
当为偶数时,
所以当为奇数时,;当为偶数时,,
所以






故选:D
【点睛】
此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.
5、C
【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,

又当时,令,则,即,

综上所述,的取值范围为.
故选C.
【点睛】
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
6、C
【解析】
对选项逐个验证即得答案.
【详解】
对于,,是偶函数,故选项错误;
对于,,定义域为,在上不是单调函数,故选项错误;
对于,当时,;
当时,;
又时,.
综上,对,都有,是奇函数.
又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;
对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.
故选:.
【点睛】
本题考查函数的基本性质,属于基础题.
7、D
【解析】
如图所示建立直角坐标系,设,则,计算得到答案.
【详解】
如图所示建立直角坐标系,则,,,设,

.
当,即时等号成立.
故选:.
【点睛】
本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.
8、C
【解析】
根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.
【详解】
依题意,解得,,所以前项和中,前项的和最小,且.
故选:C
【点睛】
本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.
9、C
【解析】
分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.
详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.
点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.
10、D
【解析】
选取为基底,其他向量都用基底表示后进行运算.
【详解】
由题意是的重心,

∴,,
∴,
故选:D.
【点睛】
本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.
11、D
【解析】
在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当