1 / 19
文档名称:

山东省济南市高中名校2022-2023学年高三适应性调研考试数学试题含解析.doc

格式:doc   大小:2,223KB   页数:19页
该资料是网友上传,本站提供全文预览,预览什么样,下载就什么样,请放心下载。
点击预览全文
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

山东省济南市高中名校2022-2023学年高三适应性调研考试数学试题含解析.doc

上传人:fuxiyue 2025/4/9 文件大小:2.17 MB

下载得到文件列表

山东省济南市高中名校2022-2023学年高三适应性调研考试数学试题含解析.doc

文档介绍

文档介绍:该【山东省济南市高中名校2022-2023学年高三适应性调研考试数学试题含解析 】是由【fuxiyue】上传分享,文档一共【19】页,该文档可以免费在线阅读,需要了解更多关于【山东省济南市高中名校2022-2023学年高三适应性调研考试数学试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )
A. B. C. D.
2.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是( )

A. B. C. D.
3.若复数()是纯虚数,则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10<m<1的右焦点,点P是曲线C1,C2的交点,点Q在抛物线的准线上,ΔFPQ是以点P为直角顶点的等腰直角三角形,则双曲线C2的离心率为( )
A.2+1 B.22+3 C.210-3 D.210+3
5.已知复数,若,则的值为( )
A.1 B. C. D.
6.若复数(是虚数单位),则复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.如图,是圆的一条直径,为半圆弧的两个三等分点,则( )
A. B. C. D.
8.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )
A. B. C. D.
9.设,则( )
A. B. C. D.
10.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
11.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则( )
A.48 B.63 C.99 D.120
12.函数(其中,,)的图象如图,则此函数表达式为( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是______.
14.若在上单调递减,则的取值范围是_______
15.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆 (an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______
16.已知,则________.(填“>”或“=”或“<”).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数f(x)=|x﹣a|+|x|(a>0).
(1)若不等式f(x)﹣| x|≥4x的解集为{x|x≤1},求实数a的值;
(2)证明:f(x).
18.(12分)已知三棱柱中,,是的中点,,.
(1)求证:;
(2)若侧面为正方形,求直线与平面所成角的正弦值.
19.(12分)已知直线与抛物线交于两点.
(1)当点的横坐标之和为4时,求直线的斜率;
(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.
20.(12分)已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明.
21.(12分)(本小题满分12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,连接椭圆四个顶点形成的四边形面积为42.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且OM+ON=tOP(t≠0)O为坐标原点,当|OM-ON|<453时,求t的取值范围.
22.(10分)在平面直角坐标系中,直线的参数方程为 (为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)若点坐标为,圆与直线交于两点,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
,将,代入化简即可.
【详解】
.
故选:B.
【点睛】
本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.
2、D
【解析】
利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.
【详解】
在函数的解析式中,令,可得,则点,直线的方程为,
矩形中位于曲线上方区域的面积为,
矩形的面积为,
由几何概型的概率公式得,所以,.
故选:D.
【点睛】
本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.
3、B
【解析】
化简复数
,由它是纯虚数,求得,从而确定对应的点的坐标.
【详解】
是纯虚数,则,,
,对应点为,在第二象限.
故选:B.
【点睛】
本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.
4、A
【解析】
先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.
【详解】
由题意知,抛物线焦点F1,0,准线与x轴交点F'(-1,0),双曲线半焦距c=1,设点Q(-1,y) ΔFPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,
所以PQ⊥抛物线的准线,从而PF⊥x轴,所以P1,2,
∴2a=PF'-PF=22-2
即a=2-1.
故双曲线的离心率为e=12-1=2+1.
故选A
【点睛】
本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.
5、D
【解析】
由复数模的定义可得:,求解关于实数的方程可得:.
本题选择D选项.
6、A
【解析】
将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.
【详解】
解:,所以所对应的点为在第一象限.
故选:A.
【点睛】
本题考查了复数的乘法运算, 当成进行计算.
7、B
【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;
【详解】
解:连接、,
,是半圆弧的两个三等分点, ,且,
所以四边形为棱形,

故选:B
【点睛】
本题考查平面向量的数量积及其运算律的应用,属于基础题.
8、C
【解析】
分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.
【详解】
解:建立以为原点,以直线为轴,,,,则
,,由,即,
=,所以当时,的最小值为.
故选:C.
【点睛】
本题考查向量的数量积的坐标表示,属于基础题.
9、C
【解析】
试题分析:,.故C正确.
考点:复合函数求值.
10、C
【解析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;
【详解】
解:由已知得,是的一条对称轴,且使取得最值,则,,,,
故选:C.
【点睛】
本题考查三角函数的性质以及三角函数的变换规则,属于基础题.
11、C
【解析】
观察规律得根号内分母为分子的平方减1,从而求出n.
【详解】
解:观察各式发现规律,根号内分母为分子的平方减1
所以
故选:C.
【点睛】
本题考查了归纳推理,发现总结各式规律是关键,属于基础题.
12、B
【解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.
【详解】
解:由图象知,,则,
图中的点应对应正弦曲线中的点,
所以,解得,
故函数表达式为.
故选:B.
【点睛】
本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【解析】
由正弦定理,三角函数恒等变换的应用化简已知等式,结合范围可求的值,利用正弦定理可求的值,进而根据余弦定理,基本不等式可求的最大值,进而根据三角形的面积公式即可求解.
【详解】
解:,
由正弦定理可得:,


又,,,即,可得:,