文档介绍:该【人教版专题13 数列(解答题)(教师版) 】是由【1905133****】上传分享,文档一共【29】页,该文档可以免费在线阅读,需要了解更多关于【人教版专题13 数列(解答题)(教师版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。专题13 数列(解答题)
1.【2022年全Sn为数列an的前n项和.已知2Snn+n=2an+1.
(1)证明:an是等差数列;
(2)若a4,a7,a9成等比数列,求Sn的最小值.
【答案】(1)证明见解析;
(2)−78.
【解析】
【分析】
(1)依题意可得2Sn+n2=2nan+n,根据an=S1,n=1Sn−Sn−1,n≥2,作差即可得到an−an−1=1,从而得证;
(2)由(1)及等比中项的性质求出a1,即可得到an的通项公式与前n项和,再根据二次函数的性质计算可得.
(1)
解:因为2Snn+n=2an+1,即2Sn+n2=2nan+n①,
当n≥2时,2Sn−1+n−12=2n−1an−1+n−1②,
①−②得,2Sn+n2−2Sn−1−n−12=2nan+n−2n−1an−1−n−1,
即2an+2n−1=2nan−2n−1an−1+1,
即2n−1an−2n−1an−1=2n−1,所以an−an−1=1,n≥2且n∈N*,
所以an是以1为公差的等差数列.
(2)
解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,
又a4,a7,a9成等比数列,所以a72=a4⋅a9,
即a1+62=a1+3⋅a1+8,解得a1=−12,
所以an=n−13,所以Sn=−12n+nn−12=12n2−252n=12n−2522−6258,
所以,当n=12或n=13时Snmin=−78.
2.【2022年新高考1卷】记Sn为数列an的前n项和,已知a1=1,Snan是公差为13的等差数列.
(1)求an的通项公式;
(2)证明:1a1+1a2+⋯+1an<2.
【答案】(1)an=nn+12
(2)见解析
【解析】
【分析】
(1)利用等差数列的通项公式求得Snan=1+13n−1=n+23,得到Sn=n+2an3,利用和与项的关系得到当n≥2时,an=Sn−Sn−1=n+2an3−n+1an−13,进而得:anan−1=n+1n−1,利用累乘法求得an=nn+12,检验对于n=1也成立,得到an的通项公式an=nn+12;
(2)由(1)的结论,利用裂项求和法得到1a1+1a2+⋯+1an=21−1n+1,进而证得.
(1)
∵a1=1,∴S1=a1=1,∴S1a1=1,
又∵Snan是公差为13的等差数列,
∴Snan=1+13n−1=n+23,∴Sn=n+2an3,
∴当n≥2时,Sn−1=n+1an−13,
∴an=Sn−Sn−1=n+2an3−n+1an−13,
整理得:n−1an=n+1an−1,
即anan−1=n+1n−1,
∴an=a1×a2a1×a3a2×…×an−1an−2×anan−1
=1×32×43×…×nn−2×n+1n−1=nn+12,
显然对于n=1也成立,
∴an的通项公式an=nn+12;
(2)
1an=2nn+1=21n−1n+1,
∴1a1+1a2+⋯+1an =21−12+12−13+⋯1n−1n+1=21−1n+1<2
3.【2022年新高考2卷】已知
an为等差数列,bn是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.
(1)证明:a1=b1;
(2)求集合kbk=am+a1,1≤m≤500中元素个数.
【答案】(1)证明见解析;
(2)9.
【解析】
【分析】
(1)设数列an的公差为d,根据题意列出方程组即可证出;
(2)根据题意化简可得m=2k−2,即可解出.
(1)
设数列an的公差为d,所以,a1+d−2b1=a1+2d−4b1a1+d−2b1=8b1−a1+3d,即可解得,b1=a1=d2,所以原命题得证.
(2)
由(1)知,b1=a1=d2,所以bk=am+a1⇔b1×2k−1=a1+m−1d+a1,即2k−1=2m,亦即m=2k−2∈1,500,解得2≤k≤10,所以满足等式的解k=2,3,4,⋯,10,故集合k|bk=am+a1,1≤m≤500中的元素个数为10−2+1=9.
4.【2021年甲卷文科】记为数列的前n项和,已知,且数列是等差数列,证明:是等差数列.
【答案】证明见解析.
【解析】
【分析】
先根据求出数列的公差,进一步写出的通项,从而求出的通项公式,最终得证.
【详解】
∵数列是等差数列,设公差为
∴,
∴,
∴当时,
当时,,满足,
∴的通项公式为,
∴
∴是等差数列.
【点睛】
在利用求通项公式时一定要讨论的特殊情况.
5.【2021年甲卷理科】已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列:②数列是等差数列;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
【答案】证明过程见解析
【解析】
【分析】
选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.
选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;
选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.
【详解】
选①②作条件证明③:
[方法一]:待定系数法+与关系式
设,则,
当时,;
当时,;
因为也是等差数列,所以,解得;
所以,,故.
[方法二] :待定系数法
设等差数列的公差为d,等差数列的公差为,
则,将代入,
化简得对于恒成立.
则有,解得.所以.
选①③作条件证明②:
因为,是等差数列,
所以公差,
所以,即,
因为,
所以是等差数列.
选②③作条件证明①:
[方法一]:定义法
设,则,
当时,;
当时,;
因为,所以,解得或;
当时,,当时,满足等差数列的定义,此时为等差数列;
当时,,不合题意,舍去.
综上可知为等差数列.
[方法二]【最优解】:求解通项公式
因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.
【整体点评】
这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,平方后得到的关系式,利用得到的通项公式,进而得到,是选择①②证明③的通式通法;法二:分别设出与的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,,进而得到;选①③时,按照正常的思维求出公差,表示出及,进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于的一次函数,直接设出,结合的关系求出,根据可求,然后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.
6.【2021年乙卷文科】设是首项为1的等比数列,数列满足.已知,,
成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
【答案】(1),;(2)证明见解析.
【解析】
【分析】
(1)利用等差数列的性质及得到,解方程即可;
(2)利用公式法、错位相减法分别求出,再作差比较即可.
【详解】
(1)因为是首项为1的等比数列且,,成等差数列,
所以,所以,
即,解得,所以,
所以.
(2)[方法一]:作差后利用错位相减法求和
,
,
.
设,       ⑧
则.        ⑨
由⑧-⑨得.
所以.
因此.
故.
[方法二]【最优解】:公式法和错位相减求和法
证明:由(1)可得,
,①
,②
①②得 ,
所以,
所以,
所以.
[方法三]:构造裂项法
由(Ⅰ)知,令,且,即,
通过等式左右两边系数比对易得,所以.
则,下同方法二.
[方法四]:导函数法
设,
由于,
则.
又,
所以
,下同方法二.
【整体点评】
本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.
(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;
方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;
方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,
方法四利用导数方法求和,也是代替错位相减求和法的一种方法.
7.【2021年乙卷理科】记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由已知得,且,取,得,由题意得,消积得到项的递推关系,进而证明数列是等差数列;
(2)由(1)可得的表达式,由此得到的表达式,然后利用和与项的关系求得.
【详解】
(1)[方法一]:
由已知得,且,,
取,由得,
由于为数列的前n项积,
所以,
所以,
所以,
由于
所以,即,其中
所以数列是以为首项,以为公差等差数列;
[方法二]【最优解】: