文档介绍:该【人教3.2 牛顿运动定律的综合应用(讲)--2023年高考物理一轮复习讲练测(全国通用)(解析版) 】是由【1905133****】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【人教3.2 牛顿运动定律的综合应用(讲)--2023年高考物理一轮复习讲练测(全国通用)(解析版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。第三章 牛顿运动定律
近5年考情分析
考点要求
等级要求
考题统计
2022
2021
2020
2019
2018
对牛顿运动定律的理解
Ⅰ
浙江6月卷·T2
全国乙卷·T15
湖南卷·T9
全国甲卷·T14
浙江6月卷·T4
山东卷·T1
浙江1月
牛顿运动定律的综合应用
Ⅱ
浙江1月卷·T19
浙江6月卷·T19
全国甲卷·T19
全国乙卷·T21
浙江6月卷·T19
江苏卷·T5
浙江1月
Ⅱ卷·T19
Ⅲ卷·T20
卷Ⅰ·T15
实验四:验证牛顿运动定律
Ⅱ
山东卷·T13
全国甲卷·T22
湖南卷·T11
Ⅱ卷·T22
浙江7月
Ⅱ卷·T23
核心素养
物理观念:对惯性,超、失重和牛顿运动定律的理解。
科学思维:1.“轻绳”模型与“轻杆模型”.、板块模型以及整体法隔离法解连接体问题。
科学态度与责任:用牛顿运动定律研究生产、科技、体育中的问题。
科学探究:探究加速度与力的关系。
命题规律
高考命题中对本章内容的考查有惯性、力与运动的关系、加速度与力的关系、超重与失重,题型有选择题、、隔离法、数图转换、函数论证、临界极值法,、推理能力、分析综合能力、应用数学处理物理问题的能力、实验能力。试题难度中等偏易。高考试题会综合牛顿运动定律和运动学规律,注重与电场、磁场的渗透,注重与生产、生活、当今热点、现代科技的联系,注意社会责任、科学态度等要素的渗透。
备考策略
,熟练掌握基本方法,积累消化基础模型,努力拓展新情景下的应用.
:牛顿运动定律的理解、动力学的两类基本问题、超重与失
重、连接体问题、动力学中的图象问题、板块模型与多过程问题、传送带问题、实验的理解创新与改进.
.
。
【网络构建】
牛顿运动定律的综合应用
【网络构建】
考点一 超重和失重
1.超重
(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.
(2)产生条件:物体具有向上的加速度.
2.失重
(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.
(2)产生条件:物体具有向下的加速度.
3.完全失重
(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.
(2)产生条件:物体的加速度a=g,方向竖直向下.
从受力的角度判断
当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态
从加速度的角度判断
当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态
从速度变化的角度判断
①物体向上加速或向下减速时,超重
②物体向下加速或向上减速时,失重
考点二 动力学中的连接体问题
1.连接体的类型
(1)轻绳连接体
(2)接触连接体
(3)弹簧连接体
2.连接体的运动特点
轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.
轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.
3.解决方法
(1)分析方法:整体法和隔离法.
(2)选用整体法和隔离法的策略
①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法.
②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解.
考点三 临界极值问题
1.临界或极值条件的标志
(1)有些题目中有“刚好”“恰好”“正好”等字眼,表明题述的过程存在临界点.
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在“起止点”,而这些起止点往往就对应临界状态.
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在极值,这个极值点往往是临界点.
(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度.
2.几种临界状态和其对应的临界条件
临界状态
临界条件
速度达到最大
物体所受的合外力为零
两物体刚好分离
两物体间的弹力FN=0
绳刚好被拉直
绳中张力为零
绳刚好被拉断
绳中张力等于绳能承受的最大拉力
考点四 传送带模型
项目
图示
滑块可能的运动情况
情景1
(1)可能一直加速
(2)可能先加速后匀速
情景2
(1)v0>v时,可能一直减速,也可能先减速再匀速
(2)v0<v时,可能一直加速,也可能先加速再匀速
情景3
(1)传送带较短时,滑块一直减速达到左端
(2)传送带较长时,滑块还要被传送带传回右端.若v0
>v,返回时速度为v;若v0<v,返回时速度为v0
项目
图示
滑块可能的运动情况
情景1
(1)可能一直加速
(2)可能先加速后匀速
情景2
(1)可能一直加速
(2)可能先加速后匀速
(3)可能先以a1加速后以a2加速
情景3
(1)可能一直加速
(2)可能一直匀速
(3)可能先加速后匀速
(4)可能先减速后匀速
(5)可能先以a1加速后以a2加速
(6)可能一直减速
情景4
(1)可能一直加速
(2)可能一直匀速
(3)可能先减速后反向加速
(4)可能一直减速
考点五 滑块—木板模型
1.模型特征
滑块——滑板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次相互作用,属于多物体、多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.另外,常见的子弹射击滑板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块——滑板模型类似.
2.两种类型
类型图示
规律分析
木板B带动物块A,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为xB=xA+L
物块A带动木板B,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为xB+L=xA
“板块”模型时要抓住一个转折和两个关联
高频考点一 超重和失重
例1、电梯的顶部挂一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10 N,在某时刻电梯中的人观察到弹簧秤的示数变为6 N, 关于电梯的运动(如图所示),以下说法正确的是(g取10 m/s2( )
电梯可能向上加速运动,加速度大小为4 m/s2 B.电梯可能向下加速运动,加速度大小为4 m/s2
C.电梯可能向上减速运动,加速度大小为4 m/s2 D.电梯可能向下减速运动,加速度大小为4 m/s2
【答案】 BC
【解析】电梯匀速直线运动时,弹簧秤的示数为10 N,知重物的重力等于10 N,在某时刻电梯中的人观察到弹簧秤的示数变为6 N,可知电梯处于失重状态,加速度向下,对重物根据牛顿第二定律有:mg-F=ma,解得a=4 m/s2,方向竖直向下,则电梯的加速度大小为4 m/s2,方向竖直向下.电梯可能向下做加速运动,也可能向上做减速运动,故B、C正确,A、D错误.
【变式训练】为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动
调整,使座椅始终保持水平,如图所示.当此车减速上坡时,则乘客(仅考虑乘客与水平面之间的作用)( )
A.处于超重状态 B.不受摩擦力的作用
C.受到向后(水平向左)的摩擦力作用 D.所受合力方向竖直向上
【答案】C【解析】当车减速上坡时,加速度方向沿斜坡向下,人的加速度与车的加速度相同,根据牛顿第二定律知人的合力方向沿斜面向下.
人受重力、支持力和水平向左的静摩擦力,如图所示.
将加速度沿竖直方向和水平方向分解,有竖直向下的加速度,则mg-FN=may,FN<mg,乘客处于失重状态,故A、B、D错误,C正确.
高频考点二 动力学中的连接体问题
例2、如图所示,粗糙水平面上放置B、C两物体,A叠放在C上,A、B、C的质量分别为m、2m和3m,物体B、C与水平面间的动摩擦因数相同,其间用一不可伸长的轻绳相连,,使三个物体以同一加速度向右运动,则( )
A.此过程中物体C受五个力作用 B.当F逐渐增大到FT时,轻绳刚好被拉断
C.,轻绳刚好被拉断
D.若水平面光滑,则绳刚断时,A、C间的摩擦力为
【答案】 C
【解析】 对A,A受重力、支持力和向右的静摩擦力作用,可以知道C受重力、A对C的压力、地面的支持力、绳子的拉力、A对C的摩擦力以及地面的摩擦力六个力作用,故A错误;对整体分析,整体的加速度a==-μg,隔离对AC分析,根据牛顿第二定律得,FT-μ·4mg=4ma,计算得出FT=F,当F=,轻绳刚好被拉断,故B错误,C正确;水平面光滑,绳刚断时,对AC分析,加速度a=,隔离对A分析,A的摩擦力Ff=ma=,故D错误.
【变式训练】如图所示,质量分别为mA、mB的A、B两物块用轻线连接,放在倾角为θ的斜面上,用始
终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、
轻线上的张力,可行的办法是 ( )
A.减小A物块的质量 B.增大B物块的质量
C.增大倾角θ D.增大动摩擦因数μ
【答案】AB
【解析】对A、B组成的系统应用牛顿第二定律得:
F-(mA+mB)gsin θ-μ(mA+mB)gcos θ=(mA+mB)a,
隔离物块B,应用牛顿第二定律得,
FT-mBgsin θ-μmBgcos θ=mBa.
两式联立可解得:FT=,由此可知,FT的大小与θ、μ无关,mB越大,mA越小,FT越大,故A、B均正确.
例3、在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机
车在东边拉着这列车厢以大小为a的加速度向东行驶时,连接某两相邻车厢的挂钩P和Q间的拉力大小为
F;当机车在西边拉着车厢以大小为a的加速度向西行驶时,
间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( )
A.8 B.10 C.15 D.18
【答案】 BC
【解析】 设PQ西边有n节车厢,每节车厢的质量为m,则F=nma①
设PQ东边有k节车厢,则F=km·a②
联立①②得3n=2k,由此式可知n只能取偶数,
当n=2时,k=3,总节数为N=5
当n=4时,k=6,总节数为N=10
当n=6时,k=9,总节数为N=15
当n=8时,k=12,总节数为N=20,故选项B、C正确.
【变式训练】如图所示,在倾角为θ的固定斜面上有两个靠在一起的物体A、B,两物体与斜面间的动摩擦因数μ相同,用平行于斜面的恒力F向上推物体A使两物体沿斜面向上做匀加速运动,且B对A的压力平行于斜面,则下列说法中正确的是 ( )
A.只减小A的质量,B对A的压力大小不变
B.只减小B的质量,B对A的压力大小会增大
C.只减小斜面间的倾角,B对A的压力大小不变
D.只减小两物体与斜面间的动摩擦因数μ,B对A的压力会增大
【答案】C
【解析】将A、B看成一个整体,整体在沿斜面方向上受到沿斜面向下的重力的分力,沿斜面向下的滑动摩擦力,沿斜面向上的推力,根据牛顿第二定律可得a==-gsin θ-μgcos θ,隔离B分析可得FN-mBgsin θ-μmBgcos θ=mBa,解得FN=,由牛顿第三定律可知,B对A的压力FN′=,若只减小A的质量,压力变大,若只减小B的质量,压力变小,A、B错误;A、B之间的压力与斜面的倾角、与斜面间的动摩擦因数无关,C正确,D错误.
例4、如图所示,光滑水平面上,质量分别为m、M的木块A、B在水平恒力F作用下一起以加速度a向右做匀加速运动,木块间的轻质弹簧劲度系数为k,原长为L0,则此时木块A、B间的距离为 ( )
A.L0+ B.L0+
C.L0+ D.L0+
【答案】 B
【解析】 先以A、B整体为研究对象,加速度为:a=,再隔离A木块,弹簧的弹力:F弹=ma=kΔx,则弹簧的长度L=L0+=L0+,故选B.
【变式训练】物体A、B放在光滑水平面上并用轻质弹簧做成的弹簧秤
相连,如图所示,今对物体A、B分别施以方向相反的水平力F1、F2,且F1大于F2,则弹簧秤的示数( )
A.一定等于F1-F2 B.一定大于F2小于F1
C.一定等于F1+F2 D.条件不足,无法确定
【解析】两个物体一起向左做匀加速直线运动,对两个物体整体运用牛顿第二定律,有:F1-F2=(M+m)a,再对物体A受力分析,运用牛顿第二定律,得到:F1-F=Ma,由以上两式解得F=,由于F1大于F2,故F一定大于F2小于F1,故B正确.
【答案】B
高频考点三 临界极值问题
例5、如图所示,质量m=2 kg的小球用细绳拴在倾角θ=37°的光滑斜面上,此时,细绳平行于斜面.G
取10 m/ ( )
A.当斜面以5 m/s2的加速度向右加速运动时,绳子拉力为20 N
B.当斜面以5 m/s2的加速度向右加速运动时,绳子拉力为30 N
C.当斜面以20 m/s2的加速度向右加速运动时,绳子拉力为40 N
D.当斜面以20 m/s2的加速度向右加速运动时,绳子拉力为60 N
【答案】 A
【解析】 小球刚好离开斜面时的临界条件是斜面对小球的弹力恰好为零.斜面对小球的弹力恰好为零时,设绳子的拉力为F,,根据牛顿第二定律有Fcos θ=ma0,Fsin θ-mg=0,代入数据解得a0≈ m/s2.
(1)由于a1=5 m/s2<a0,可见小球仍在斜面上,此时小球的受力情况如图甲所示.