文档介绍:该【安徽省阜阳市颍州区阜阳实验中学2025-2025学年八年级上学期1月期末考试数学试题 】是由【sunny】上传分享,文档一共【7】页,该文档可以免费在线阅读,需要了解更多关于【安徽省阜阳市颍州区阜阳实验中学2025-2025学年八年级上学期1月期末考试数学试题 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。安徽省阜阳市颍州区阜阳实验中学2025-2025学年八年级上学期1月期末考试数学试题
考试时间: 120分钟 总分: 150分 年级/班级: 八年级
试卷标题:安徽省阜阳市颍州区阜阳实验中学2025-2025学年八年级上学期1月期末考试数学试题。
一、选择题〔共10题,每题3分〕
要求:在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1. 假设a > b,那么以下不等式中正确的选项是〔 〕
A. a + 2 > b + 2
B. a - 2 < b - 2
C. a - 2 > b - 2
D. a + 2 < b + 2
2. 假设m^2 - 4m + 3 = 0,那么m的值为〔 〕
A. 1
B. 2
C. 3
D. 4
3. 以下函数中,y是x的一次函数的是〔 〕
A. y = 2x^2 + 3
B. y = 3x + 4
C. y = 4x^3 + 5
D. y = x^2 + 2x + 3
4. 假设等腰三角形的底边长为8,腰长为10,那么该三角形的面积是〔 〕
A. 32
B. 40
C. 48
D. 56
5. 假设一个数加上它的平方等于100,那么这个数是〔 〕
A. 10
B. -10
C. 5
D. -5
6. 以下各式中,能化为分式的是〔 〕
A. 2x + 3
B. 3x^2 - 2x
C. 4x^3 + 5x
D. 5x^2 - 6x
7. 假设a、b、c是等差数列,且a + b + c = 15,那么b的值为〔 〕
A. 5
B. 6
C. 7
D. 8
8. 以下各式中,能化为完全平方公式的是〔 〕
A. x^2 + 6x + 9
B. x^2 - 6x + 9
C. x^2 + 3x + 4
D. x^2 - 3x + 4
9. 假设一个数的平方根是2,那么这个数是〔 〕
A. 4
B. -4
C. 1
D. -1
10. 以下各式中,能化为有理数的是〔 〕
A. √3
B. √2
C. √5
D. √7
二、填空题〔共10题,每题3分〕
要求:直接写出答案。
11. 假设a = 3,b = -2,那么a - b的值为__________。
12. 假设x^2 - 5x + 6 = 0,那么x的值为__________。
13. 假设y = 2x + 3,当x = 2时,y的值为__________。
14. 假设等腰三角形的底边长为6,腰长为8,那么该三角形的面积为__________。
15. 假设一个数的平方根是3,那么这个数是__________。
16. 假设a、b、c是等差数列,且a + b + c = 15,那么b的值为__________。
17. 假设x^2 - 4x + 4 = 0,那么x的值为__________。
18. 假设y = 3x - 2,当x = 1时,y的值为__________。
19. 假设一个数的平方根是-2,那么这个数是__________。
20. 假设a、b、c是等差数列,且a + b + c = 15,那么b的值为__________。
三、解答题〔共3题,每题15分〕
要求:写出解题过程。
21. 知晓:a、b、c是等差数列,且a + b + c = 15,求b的值。
22. 知晓:一个数加上它的平方等于100,求这个数。
23. 知晓:y = 2x + 3,当x = 2时,求y的值。
四、证明题〔共1题,10分〕
要求:写出证明过程。
24. 证明:假设a、b、c是等差数列,且a + b + c = 15,那么b的值为5。
五、应用题〔共1题,10分〕
要求:写出解题过程。
25. 知晓:一个等腰三角形的底边长为8,腰长为10,求该三角形的面积。
六、综合题〔共1题,15分〕
要求:写出解题过程。
26. 知晓:y = 3x - 2,当x = 1时,求y的值。
本次试卷答案如下:
一、选择题答案及解析:
1. A
解析:根据不等式的性质,两边同时加上或减去同一个数,不等号的方向不变。
2. B
解析:将方程m^2 - 4m + 3 = 0进行因式分解,得到(m - 1)(m - 3) = 0,解得m = 1或m = 3。
3. B
解析:一次函数的定义是y = kx + b〔k≠0〕,其中k是斜率,b是y轴截距。选项B符合一次函数的定义。
4. B
解析:等腰三角形的面积公式为S = (底边长×高)/2。由勾股定理可知,高为√(腰长^2 - (底边长/2)^2) = √(10^2 - 4^2) = √(100 - 16) = √84。代入公式计算得S = (8×√84)/2 = 4√21。
5. A
解析:设这个数为x,那么x + x^2 = 100,移项得x^2 + x - 100 = 0,分解因式得(x - 10)(x + 10) = 0,解得x = 10或x = -10。
6. D
解析:分式是由分子和分母组成的,分母不能为0。选项D中的表达式可以化为分式。
7. A
解析:由等差数列的性质可知,a + b + c = 3b,所以3b = 15,解得b = 5。
8. B
解析:完全平方公式是(a + b)^2 = a^2 + 2ab + b^2。选项B中的表达式可以化为完全平方公式。
9. A
解析:一个数的平方根是2,那么这个数是2的平方,即4。
10. D
解析:有理数是可以表示为两个整数之比的数。选项D中的表达式可以化为有理数。
二、填空题答案及解析:
11. 5
解析:a - b = 3 - (-2) = 3 + 2 = 5。
12. 3 或 2
解析:x^2 - 5x + 6 = 0,因式分解得(x - 2)(x - 3) = 0,解得x = 2或x = 3。
13. 7
解析:将x = 2代入y = 2x + 3得y = 2×2 + 3 = 4 + 3 = 7。
14. 16√3
解析:等腰三角形的面积公式为S = (底边长×高)/2。由勾股定理可知,高为√(腰长^2 - (底边长/2)^2) = √(10^2 - 4^2) = √(100 - 16) = √84。代入公式计算得S = (8×√84)/2 = 4√21。
15. 9
解析:一个数的平方根是3,那么这个数是3的平方,即9。
16. 5
解析:由等差数列的性质可知,a + b + c = 3b,所以3b = 15,解得b = 5。
17. 2 或 2
解析:x^2 - 4x + 4 = 0,因式分解得(x - 2)^2 = 0,解得x = 2。
18. 1
解析:将x = 1代入y = 3x - 2得y = 3×1 - 2 = 3 - 2 = 1。
19. 4
解析:一个数的平方根是-2,那么这个数是-2的平方,即4。
20. 5
解析:由等差数列的性质可知,a + b + c = 3b,所以3b = 15,解得b = 5。
三、解答题答案及解析:
21. b = 5
解析:由等差数列的性质可知,a + b + c = 3b,所以3b = 15,解得b = 5。
22. x = 10 或 x = -10
解析:设这个数为x,那么x + x^2 = 100,移项得x^2 + x - 100 = 0,分解因式得(x - 10)(x + 10) = 0,解得x = 10或x = -10。
23. y = 7
解析:将x = 2代入y = 2x + 3得y = 2×2 + 3 = 4 + 3 = 7。
四、证明题答案及解析:
24. 证明:假设a、b、c是等差数列,且a + b + c = 15,那么b的值为5。
证明:由等差数列的性质可知,a + b + c = 3b,所以3b = 15,解得b = 5。
五、应用题答案及解析:
25. 面积 = 16√3
解析:等腰三角形的面积公式为S = (底边长×高)/2。由勾股定理可知,高为√(腰长^2 - (底边长/2)^2) = √(10^2 - 4^2) = √(100 - 16) = √84。代入公式计算得S = (8×√84)/2 = 4√21。
六、综合题答案及解析:
26. y = 1
解析:将x = 1代入y = 3x - 2得y = 3×1 - 2 = 3 - 2 = 1。