文档介绍:该【实际问题与一元一次方程(常见题型) 】是由【胜利的喜悦】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【实际问题与一元一次方程(常见题型) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
1
(完整word版)实际问题与一元一次方程(常见题型)
实际问题与一元一次方程(一)基础
【学习目标】
;
,工程,配套及和差倍分问题的解题思路.
【要点梳理】
知识点一、用一元一次方程解决实际问题的一般步骤
列方程解应用题的基本思路为:问题方程解答.由此可得解决此类
题的一般步骤为:审、找、设、列、解、检、答.
要点诠释:
(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系.
(2)“找”寻找等量关系;
(3)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;
(4)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;
(5)“解”就是解方程,求出未知数的值.
(6)“检”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;
(7)“答”就是写出答案,注意单位要写清楚.
知识点二、常见列方程解应用题的几种类型
1.和、差、倍、分问题
(1)基本量及关系:增长量=原有量×增长率,
现有量=原有量+增长量,现有量=原有量-降低量.
(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.
2.行程问题
(1)三个基本量间的关系: 路程=速度×时间
(2)基本类型有:
①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间
Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.
②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间
Ⅱ.寻找相等关系:
同地不同时出发:前者走的路程=追者走的路程;
同时不同地出发:前者走的路程+两者相距距离=追者走的路程.
③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
顺水速度-逆水速度=2×水流速度;
Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.
3.工程问题
如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:
(1)总工作量=工作效率×工作时间;
(2)总工作量=各单位工作量之和.
4.调配问题
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
2
(完整word版)实际问题与一元一次方程(常见题型)
寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.
【典型例题】
类型一、和差倍分问题
1.,,问生产运营用水和居民家庭用水各多少亿立方米?
【答案与解析】设生产运营用水x亿立方米,则居民家庭用水(—x)亿立方米.
依题意,-x=3x+
解得x=
5。8—x=—=4。5(亿立方米)
答:生产运营用水1。3亿立方米,.
【总结升华】本题要求两个未知数,不妨设其中一个未知数为x,另外一个用含x的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5。8亿立方米.
举一反三:
【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?
【答案】解:设第二个季度麻商集团销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台,依题意可得:x+2x+4x=2800,
解得:x=400
答:麻商集团第二个季度销售冰箱400台.
类型二、行程问题
2.小山娃要到城里参加运动会,如果每小时走4千米,,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?
【答案与解析】
解:设小山娃预订的时间为x小时,由题意得:
4x+=5(x-0。5),解得x=3.
所以4x+0。5=4×3+=12。5(千米).
答:.
【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.
举一反三:
【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.
【答案】
解:设这段坡路长为a千米,汽车的平均速度为x千米/时,则上坡行驶的时间为小时,下坡行驶的时间为小时.依题意,得:,
化简得: .
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
3
(完整word版)实际问题与一元一次方程(常见题型)
显然a≠0,解得
答:汽车的平均速度为千米/时.
2。相遇问题(相向问题)
【高清课堂:实际问题与一元一次方程(一) 388410 相遇问题】
3. A、B两地相距100km,甲、乙两人骑自行车分别从A、B两地出发相向而行,甲的速度是23km/h,乙的速度是21km/h,甲骑了1h后,乙从B地出发,问甲经过多少时间与乙相遇?
【答案与解析】
解:设甲经过x小时与乙相遇。
由题意得:
解得,x=
答:甲经过2。75小时与乙相遇.
【总结升华】等量关系:甲走的路程+乙走的路程=100km
举一反三:
【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行,2小时相遇,每小时甲比乙多走2。5km,求甲、乙每小时各行驶多少千米?
【答案】
解:设乙每小时行驶x千米,则甲每小时行驶(x+2。5)千米,根据题意,得:
解得:
(千米)
答:甲每小时行驶12。5千米,乙每小时行驶10千米
3。追及问题(同向问题)
4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?
【答案与解析】
解:设通讯员x小时可以追上学生队伍,则根据题意,
得,
得:, 小时=10分钟.
答:通讯员用10分钟可以追上学生队伍.
【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x表示小时,18表示分钟,两边单位不一致,应先统一单位.
4。航行问题(顺逆风问题)
5.一艘船航行于A、B两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
4
(完整word版)实际问题与一元一次方程(常见题型)
4千米/时,求这两个码头之间的距离.
【答案与解析】
解法1:设船在静水中速度为x千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,
(16+4)×3=60(千米)
答:两码头之间的距离为60千米.
解法2:设A、B两码头之间的距离为x千米,则船顺水航行时速度为千米/时,逆水航行时速度为千米/时,由船在静水中的速度不变得方程:,解得:
答:两码头之间的距离为60千米.
【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.
类型三、工程问题
6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?
【思路点拨】视水池的蓄水量为“1”,设乙管还需x小时可以注满水池;那么甲乙合注1小时注水池的,甲管单独注水每小时注水池的,合注7小时注水池的,乙管每小时注水池的.
【答案与解析】
解:设乙管还需x小时才能注满水池.
由题意得方程:
解此方程得:x=9
答:单独开乙管,还需9小时可以注满水池.
【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .
举一反三:
【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?
【答案】
解:设乙中途离开x天,由题意得
解得:
答:乙中途离开了3天
类型四、调配问题(比例问题、劳动力调配问题)
7.星光服装厂接受生产某种型号的学生服的任务,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
5
(完整word版)实际问题与一元一次方程(常见题型)
【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣 件,或做裤子1条,此外恰好配套说明裤子的数量应该等于上衣的数量.
【答案与解析】
解:设做上衣需要xm,则做裤子为(750—x)m,做上衣的件数为件,做裤子的件数为,则有:
解得:x=450,
750-x=750—450=300(m), (套)
答:用450m做上衣,300m做裤子恰好配套,共能生产300套.
【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数.
举一反三:
【高清课堂:实际问题与一元一次方程(一) 调配问题】
【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的 。
解:设从甲队调出x人到乙队。由题意得,
解得,x=12。
答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的 .
实际问题与一元一次方程(二)(提高)
【学习目标】
;
,工程,配套及和差倍分问题的解题思路.
【要点梳理】
要点一、用一元一次方程解决实际问题的一般步骤
要点二、常见列方程解应用题的几种类型(待续)
1.和、差、倍、分问题
(1)基本量及关系:增长量=原有量×增长率,
现有量=原有量+增长量,现有量=原有量-降低量.
(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.
2.行程问题
(1)三个基本量间的关系: 路程=速度×时间
(2)基本类型有:
①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间
Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.
②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间
Ⅱ.寻找相等关系:
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
6
(完整word版)实际问题与一元一次方程(常见题型)
第一,同地不同时出发:前者走的路程=追者走的路程;
第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.
③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
顺水速度-逆水速度=2×水速;
Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.
3.工程问题
如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:
(1)总工作量=工作效率×工作时间;
(2)总工作量=各单位工作量之和.
4.调配问题
寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.
【典型例题】
类型一、和差倍分问题
1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
【答案与解析】
解:设油箱里原有汽油x公斤,由题意得:
x(1—25%)(1—40%)+1=25%x+(1—25%)x×40%
解得:x=10
答:油箱里原有汽油10公斤.
【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.
举一反三:
【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?
【答案】
解:设这个班有x名学生,根据题意得:
3x+24=4x—26
解得:x=50
所以3x+24=3×50+24=174
答:这个班有50名学生,一共展出了174张邮票.
类型二、行程问题
1。车过桥问题
2。 某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.
【思路点拨】正确理解火车“完全过桥”和“完全在桥上"的不同含义.
【答案与解析】
解:设火车车身长为xm,根据题意,得:
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
7
(完整word版)实际问题与一元一次方程(常见题型)
,
解得:x=300,
所以.
答:火车的长度是300m,车速是30m/s.
【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):
(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.
(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.
举一反三:
【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?
【答案】
解:设从第一排上桥到排尾离桥需要x分钟,列方程得:
,
解得:x=3
答:从第一排上桥到排尾离桥需要3分钟.
2。相遇问题(相向问题)
3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进。已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,、B两地间的路程。
【答案与解析】
解:设A、B两地间的路程为x千米,由题意得:
解得:108.
答:A、B两地间的路程为108千米。
【点评】根据“匀速前进”可知A、B的速度不变,进而A、=小李和小明前进的路程和/时间可得方程.
举一反三:
【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】
【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.
【答案】
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
9
(完整word版)实际问题与一元一次方程(常见题型)
解:设A、B两站间的距离为x km,由题意得:
解得:x=122
答: A、B两站间的距离为122km。
3。追及问题(同向问题)
4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了,结果又用两小时才追上这辆卡车,求卡车的速度.
【答案与解析】
解:设卡车的速度为x千米/时,由题意得:
解得:x=24
答:卡车的速度为24千米/时.
【点评】采用“线示"分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.
(顺逆风问题)
5.盛夏,某校组织长江夜游,在流速为2。5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,,求A、B两地间的距离.
【思路点拨】由于C的位置不确定,要分类讨论:(1)C地在A、B之间;(2)C地在A地上游.
【答案与解析】
解:设A、B两地间的距离为x千米.
(1)当C地在A、B两地之间时,依题意得.
解这个方程得:x=20(千米)
(2)当C地在A地上游时,依题意得:
解这个方程得:
答:A、B两地间的距离为20千米或千米.
【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.
6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度。
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
9
(完整word版)实际问题与一元一次方程(常见题型)
【答案与解析】
解;设最慢的人速度为x千米/时,则最快的人的速度为x千米/时, 由题意得:
x×—x×=20
解得:x=10
答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时。
【点评】这是环形路上的追及问题,:最快的人骑的路程 — 最慢人骑的路程=20千米。
举一反三:
【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A…方向,甲从A以65m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?
【答案】
解:设乙追上甲用了x分钟,则有:
72x-65x=3×90
(分)
答:乙第一次追上甲时走了(m) 此时乙在AD边上
类型三、工程问题
7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
【答案与解析】
解:设再过x小时可把水注满.由题意得:
解得:.
答:打开丙管后小时可把水放满.
【点评】相等关系:甲、乙开2h的工作量+甲、乙、丙水管的工作量=1.
举一反三:
【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割后,改用新式农机,工作效率提高到原来的倍,因此比预计时间提早1小时完成,求这块水稻田的面积.
【答案】
(完整word版)实际问题与一元一次方程(常见题型)
(完整word版)实际问题与一元一次方程(常见题型)
10
(完整word版)实际问题与一元一次方程(常见题型)
解:设这块水稻田的面积为x亩,由题意得:
解得:.
答:这块水稻田的面积为36亩.
类型四、配套问题(比例问题、劳动力调配问题)
8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?
【答案与解析】
解:设安排x人挖土,则运土的有(120—x)人,依题意得:
5x=3(120—x),
解得x=45.
120-45=75(人).
答:应安排45人挖土,75人运土.
【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.
举一反三:
【高清课堂:实际问题与一元一次方程(一) 配制问题】
【变式】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?
【答案】
解:设要用A种糖果x千克,则B种糖果用(100-x)千克。依题意,得:
28x+20(100-x)=25×100
解得:x=62。5.
当x=,100-x=37。5.
答:要用A、B两种糖果分别为62。5千克和37。5千克.
实际问题与一元一次方程(三)(基础)
【学习目标】
(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程;
(2)熟悉利润,存贷款,数字及方案设计问题的解题思路.
【要点梳理】
要点一、用一元一次方程解决实际问题的一般步骤
要点三、常见列方程解应用题的几种类型(续)
1.利润问题
(1)
(2) 标价=成本(或进价)×(1+利润率)
(3) 实际售价=标价×打折率