文档介绍:711单考数学考试大纲
一、考试内容
高等数学、线性代数
二、高等数学部分的考试大纲
(一)函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
函数连续的概念函数间断点的类型初等函数的连续性、闭区间上连续函数的性质
考试要求
理解函数的概念,掌握函数的表示法,并会建立简单应用问题的函数关系式。
了解函数的有界性、单调性、周期性和奇偶性。
理解复合函数及分段函数概念,了解反函数及隐函数的概念。
掌握基本初等函数的性质及其图形,了解初等函数的概念。
理解极限的概念,理解函数的左极限与右极限概念,以及函数极限存在与左、右极限之间的关系。
掌握极限的性质及四则运算法则。
掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限的方法。
理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
(二)一元函数微分学
考试内容
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值
考试要求
理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
了解高阶导数的概念,会求简单函数的阶导数。
会求分段函数的一阶、二阶导数。
会求隐函数和由参数方程所确定的函数以及反函数的导数。
理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。
理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其简单应用。
会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
掌握用洛必达法则求未定式极限的方法。
(三)一元函数积分学
考试内容
原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿—莱布尼茨(Newton_Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分定积分的应用
考试要求
理解原函数的概念,理解不定积分和