1 / 3
文档名称:

数学历史论文.doc

格式:doc   大小:38KB   页数:3页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

数学历史论文.doc

上传人:mh900965 2018/4/11 文件大小:38 KB

下载得到文件列表

数学历史论文.doc

相关文档

文档介绍

文档介绍:邢台电大13秋土木(本)专业第二次提交作业
数学历史中的数学文化
姓名:李闯飞学号:13********** 13秋土木工程本科
【摘要】:数学方法和数学思想将数学的智慧和魅力展现得淋漓尽致,这些凝聚了数学家们智慧的知识不是几句话就能说明白。数学的方法是贯穿了整个数学,也是学习数学的基础。在此我将我所学到的和我心中所想的一些数学方法和思想写出略表我对数学的解读。
历史上,数学的发展有顺利也有曲折。大的曲折也可以叫做危机。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往是数学发展的动力。
数学发展史上共有三次数学危机。每一次都是数学的基本部分受到质疑。实际上,也恰恰是这三次危机引发了数学史上的三次思想解放,大大推动了数学科学的发展。
【关键词】: 数学的智慧和魅力、三次数学危机、数学方法和思想、数学发展
一、智慧展现——数学方法和数学思想
数学的很多方法是有辩证性的,比如具体与抽象;演绎与归纳;发现与证明;这些方法之间有联系又有区别。
(一)、具体与抽象
具体是社会实践,是客观存在的东西,因为数学是源于社会实践的。同时数学是一种利用自身已有的概念、定理、公设,借助已知的相互关系,通过推理、计算而获得新发现的学科。数学的概念是抽象的,数学的方法也是抽象的。爱因斯坦相对论的发现恰恰是借助于数学的方法论路径去实现的,如果没有非欧几何人类可能还要在牛顿的时空观中走过许多年才能寻找到相对论。数学方法的抽象是借助数学概念、公理、定理、公设等,把所有涉及研究对象的概念以及研究对象的抽象性归并汇集在一起,找出他们更具体抽象、统一的结论。现在,数学研究的对象已不是具体、特殊的对象,而是抽象的数学结构。
(二)、演绎与归纳
演绎法是由一般到特殊的推理,它有三段论的表现形式,由一般的判断,特殊判断,结论三部分组成。归纳与演绎不同,归纳是这样一种推理:其中所得到的结论超越了经验材料所提供的东西的一种经验猜想。看起来归纳与演绎很有区别的,事实归纳与演绎是相依而存、互为发展、对立统一的。
(三)、发现与证明
发现实际上就是定律的发现和理论地提出问题,最主要是通过假说,猜想。猜想是提出新思想,一个猜想可以带出或生出一个新的学科方向。比如,对欧氏第五公设的证明产生了非欧几何理论,四色猜想对开辟数学研究新途径有重要意义。在数学史上有很多有名猜想,人们熟悉的费马猜想,曾是一个悬赏10万马克的定理,实际上,它是源于几千年前的勾股定理。得沃尔夫奖。
二、成长与磨砺——数学的发展
写关于数学文化不得不写数学的发展。数学是人类最古老的科学知识之一,它主要是研究现实生活中数与数、形与形,以及数与形之间相互关系的一门学科。他们发展也经历的很多的坎坷,在磨砺中他也得以不断的成长。
首先是数学的萌芽阶段,在这一时代的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。古埃及文化可追溯到公元前4000年,在那里,公元前3200年就已有了统一的国家。公元前2900年,开始建筑金字塔,就金字塔的建筑来讲,已经具备一些初等几何的知识;巴比伦文化可以上溯到公元前2000年左右的苏美尔文化,这一时期,人们基于对量的认识,经建立了数的概念。从大约公元前1800年开始,巴比伦已经使用较为系统的以60为基数的数系;另一个重要的是古希腊数学,希腊文化在世界文明史上的贡献是至高