1 / 3
文档名称:

Quiz5 570统计.doc

格式:doc   大小:21KB   页数:3页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

Quiz5 570统计.doc

上传人:mh900965 2018/4/20 文件大小:21 KB

下载得到文件列表

Quiz5 570统计.doc

文档介绍

文档介绍:AMS570 Quiz 5
Name: _______________________________________________ID: __________________________________________
This is a close-book exam, due 1:40pm. Please do NOT leave after the quiz – lecture will start after the quiz.
Let X1,…,Xn be a random sample from an exponential distribution exp θ with pdf:
f x;θ=1θexp-xθ, where θ>0 and x>0,
Please derive
The maximum likelihood estimator (MLE) for θ.
Is the above MLE unbiased for θ?
The method of moment estimator (MOME) for θ.
Please derive the distribution of the first order statistic X1, where X1= min(X1,…,Xn), and further show whether Y=nX1 is an unbiased estimator of θ or not.
Solution:
The likelihood function is
L=i=1nf xi;θ=i=1n1θexp-xiθ=1θnexp-i=1nxiθ
The log likelihood function is
l=lnL=ln1θnexp-i=1nxiθ=-nlnθ-i=1nxiθ
Solving
∂l∂θ=-nθ+i=1nxiθ2=0
We obtain the MLE for θ:
θ=X
Since
EX=EX=0∞x1θexp-xθdx=θ
We know the MLE θ=X is an unbiased estimator for θ.
Now we derive the method of moment estimator (MOME) for θ. Since we have only one parameter, θ, to estimate, the equation of the first population moment and sample moment will suffice. That is, solving: EX=θ=X, we obtain the MOME: θ=X
Now we derive the general formula for the pdf of the first order statistic as follows:
PX1>x=PX1>x,…,Xn>x=i=1nPXi>x
Therefore we have