文档介绍:压缩感知与单相素相机
摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。pressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。
关键词:压缩感知;稀疏表示;观测矩阵;编码;解码
一、引言
Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。
于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。
简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。
在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者稀疏性和等距约束性。事实上,压缩感知理论的某些抽象结论源于Kashin创立的范函分析和逼近论,最近由Candes,Romberg,Tao和Donoho等人构造了具体的算法并且通过研究表明了这一理论的巨大应用前景。目前国内已经有科研单位的学者对其展开研究。如西安电子科技大学课题组基于该理论提出采用超低速率采样检测超宽带回波信号。
压缩感知理论框架
传统的信号采集、编解码过程如图l所示:编码端先对信号进行采样,再对所有采样值进行变换,并将其中重要系数的幅度和位置进行编码,最后将编码值进行存储或传输:信号的解码过程仅仅是编码的逆过程,接收的信号经解压缩、反变换后得到恢复信号。采用这种传统的编解码方法,由于信号的采样速率不得低于信号带宽的2倍,使得硬件系统面临着很大的采样速率的压力。此外在压缩编码过程中,大量变换计算得到的小系数被丢弃,造成了数据计算和内存资源的浪费。
图1 传统编解码理论的框图
压缩感知理论对信号的采样、压缩编码发生在同一个步骤,利用信号的稀疏性,以远低于Nyquist采样率的速率对信号进行非自适应的测量编码