1 / 96
文档名称:

医用高分子材料.ppt

格式:ppt   大小:585KB   页数:96页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

医用高分子材料.ppt

上传人:mh900965 2018/5/5 文件大小:585 KB

下载得到文件列表

医用高分子材料.ppt

相关文档

文档介绍

文档介绍:医用高分子材料
XXX 教授
XXXX材料科学与工程学院
研究生课程:高分子材料科学
1. 概述
医用高分子的概念及其发展简史
生命科学是21世纪备受关注的新型学科。而与人类健康休戚相关的医学在生命科学中占有相当重要的地位。医用材料是生物医学的分支之一,是由生物、医学、化学和材料等学科交叉形成的边缘学科。而医用高分子材料则是生物医用材料中的重要组成部分,主要用于人工器官、外科修复、理疗康复、诊断检查、患疾治疗等医疗领域。
众所周知,生物体是有机高分子存在的最基本形式,有机高分子是生命的基础。动物体与植物体组成中最重要的物质——蛋白质、肌肉、纤维素、淀粉、生物酶和果胶等都是高分子化合物。因此,可以说,生物界是天然高分子的巨大产地。高分子化合物在生物界的普遍存在,决定了它们在医学领域中的特殊地位。在各种材料中,高分子材料的分子结构、化学组成和理化性质与生物体组织最为接近,因此最有可能用作医用材料。
医用高分子材料发展的动力来自医学领域的客观需求。当人体器官或组织因疾病或外伤受到损坏时,需要器官移植。然而,只有在很少的情况下,人体自身的器官(如少量皮肤)可以满足需要。采用同种异体移植或异种移植,往往具有排异反应,严重时导致移植失败。在此情况下,人们自然设想利用其他材料修复或替代受损器官或组织。
早在公元前3500年,埃及人就用棉花纤维、马鬃缝合伤口。墨西哥印地安人用木片修补受伤的颅骨。公元前500年的中国和埃及墓葬中发现假牙、假鼻、假耳。进入20世纪,高分子科学迅速发展,新的合成高分子材料不断出现,为医学领域提供了更多的选择余地。1936年发明了有机玻璃后,很快就用于制作假牙和补牙,至今仍在使用。1943年,赛璐珞薄膜开始用于血液透析。
1949年,美国首先发表了医用高分子的展望性论文。在文章中,第一次介绍了利用PMMA作为人的头盖骨、关节和股骨,利用聚酰***纤维作为手术缝合线的临床应用情况。50年代,有机硅聚合物被用于医学领域,使人工器官的应用范围大大扩大,包括器官替代和整容等许多方面。
此后,一大批人工器官在50年代试用于临床。如人工尿道(1950年)、人工血管(1951年)、人工食道(1951年)、人工心脏瓣膜(1952年)、人工心肺(1953年)、人工关节(1954年)、人工肝(1958年)等。进入60年代,医用高分子材料开始进入一个崭新的发展时期。
60年代以前,医用高分子材料的选用主要是根据特定需求,从已有的材料中筛选出合适的加以应用。由于这些材料不是专门为生物医学目的设计和合成的,在应用中发现了许多问题,如凝血问题、炎症反应、组织病变问题、补体激活与免疫反应问题等。人们由此意识到必须针对医学应用的特殊需要,设计合成专用的医用高分子材料。
美国国立心肺研究所在这方面做了开创性的工作,他们发展了血液相容性高分子材料,以用于与血液接触的人工器官制造,如人工心脏等。从70年代始,高分子科学家和医学家积极开展合作研究,使医用高分子材料快速发展起来。至80年代以来,发达国家的医用高分子材料产业化速度加快,基本形成了一个崭新的生物材料产业。
医用高分于作为一门边缘学科,融和了高分子化学、高分子物理、生物化学、合成材料工艺学、病理学、药理学、解剖学和临床医学等多方面的知识,还涉及许多工程学问题,如各种医疗器械的设计、制造等。上述学科的相互交融、相互渗透,促使医用高分子材料的品种越来越丰富,性能越来越完善,功能越来越齐全。
高分子材料虽然不是万能的,不可能指望它解决一切医学问题,但通过分子设计的途径,合成出具有生物医学功能的理想医用高分子材料的前景是十分广阔的。有人预计,在21世纪,医用高分子将进入一个全新的时代。除了大脑之外,人体的所有部位和脏器都可用高分子材料来取代。仿生人也将比想象中更快地来到世上。
目前用高分子材料制成的人工器官中,比较成功的有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工关节、人工骨、整形材料等。巳取得重大研究成果,但还需不断完善的有人工肾、人工心脏、人工肺、人工胰脏、人工眼球、人造血液等。另有一些功能较为复杂的器官,如人工肝脏、人工胃、人工子宫等。则正处于大力研究开发之中。
从应用情况看,人工器官的功能开始从部分取代向完全取代发展,从短时间应用向长时期应用发展,从大型向小型化发展,从体外应用向体内植入发展、人工器官的种类从与生命密切相关的部位向人工感觉器官、人工肢体发展。
医用高分子材料研发过程中遇到的一个巨大难题是材料的抗血栓问题。当材料用于人工器官植入体内时,必然要与血液接触。由于人体的自然保护性反应将产生排异现象,其中之一即为在材料与肌体接触表面产生凝血,即血栓,结果将造成手术失败,严重的还会引起生命危险。对高分子材料的抗血栓性研制是医用高分子研究中的关键问题