文档介绍:翰林汇翰林汇翰林汇翰林汇课题: 曲线运动类型:复习课
目的要求:理解并熟悉掌握运动的合成与分解的思想方法,理解掌握匀速圆周运动及其重要公式,能应用有关知误解解决一些实际问题.
重点难点:
教具:
过程及内容:
第1课
运动的合成与分解
知识简析一、运动的合成
,即确有一个物体同时参与几个分运动而存在合运动;又可能是一种思维方法,即可以把一个较为复杂的实际运动看成是几个基本的运动合成的,通过对简单分运动的处理,来得到对于复杂运动所需的结果.
、速度、加速度都是矢量,运动的合成应遵循矢量运算的法则:
(1)如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算.
(2)如果分运动互成角度,运动合成要遵循平行四边形定则.
:
①两个匀速直线运动的合运动仍为匀速直线运动.
②一个匀速运动和一个匀变速运动的合运动是匀变速运动,二者共线时,为匀变速直线运动,二者不共线时,为匀变速曲线运动。
③两个匀变速直线运动的合运动为匀变速运动,当合运动的初速度与合运动的加速度共线时为匀变速直线运动,当合运动的初速度与合运动的加速度不共线时为匀变速曲线运动。
二、运动的分解
.
.
vx=vcosα和vy=vsinα是常用的处理方法.
,常用的思想方法有两种:一种思想方法是先虚拟合运动的一个位移,看看这个位移产生了什么效果,从中找到运动分解的办法;另一种思想方法是先确定合运动的速度方向(物体的实际运动方向就是合速度的方向),然后分析由这个合速度所产生的实际效果,以确定两个分速度的方向.
三、合运动与分运动的特征:
(1)等时性:合运动所需时间和对应的每个分运动所需时间相等.
(2)独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响.
(3)等效性:合运动和分运动是等效替代关系,不能并存;
(4)矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。
【例1】如图所示的塔吊臂上有一可以沿水平方向运动的小车A,,吊钩将物体B向上吊起,A、B之间的距离以(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化,则物体做
(A)速度大小不变的曲线运动. (B)速度大小增加的曲线运动.
(C)加速度大小方向均不变的曲线运动.
(D)加速度大小方向均变化的曲线运动. 答案:B C
四、物体做曲线运动的条件
;曲线运动的速度方向是该点的切线方向;曲线运动速度方向不断变化,故曲线运动一定是变速运动.
:运动物体所受的合外力(或加速度)的方向跟它的速度方向不在同一直线上(即合外力或加速度与速度的方向成一个不等于零或π的夹角).
说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。
:一是加速度大小、方向都不变的曲线运动,叫匀变曲线运动,如平抛运动;另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动.
规律方法 1、运动的合成与分解的应用
合运动与分运动的关系:,不受其他运动的影响,合运动和各个分运动经历的时间相等,讨论某一运动过程的时间,往往可直接分析某一分运动得出.
【例2】小船从甲地顺水到乙地用时t1,返回时逆水行舟用时t2,若水不流动完成往返用时t3,设船速率与水流速率均不变,则( )
>t1+t2 ; =t1+t2; <t1+t2 ; ,无法判断
解析:设船的速度为V,水的速度为v0,则
<故选C
【例3】如图所示,A、B两直杆交角为θ,交点为M,若两杆各以垂直于自身的速度V1、V2沿着纸面运动,则交点M的速度为多大?
解析:如图所示,若B杆不动,A杆以V1速度运动,交点将沿B杆移动,速度为V,V=V1/,B杆移动时,交点M将沿A杆移动,速度为V,V=V2/,交点M的速度vM可看成两个分速度V和V的合速度,故vM的大小为vM==
【例4】玻璃板生产线上,宽9m的成型玻璃板以4m/s的速度连续不断地向前行进,在