文档介绍:七年级数学(下)期末复习 - 1 -
前言 - 1 -
第六章实数 - 2 -
一、平方根与立方根 - 2 -
1、平方根 - 2 -
2、算术平方根 - 2 -
3、立方根 - 2 -
二、实数 - 2 -
三、解题实用 - 2 -
四、典题练习 - 2 -
第七章一元一次不等式与不等式组 - 3 -
一、不等式及其性质 - 3 -
四、一元一次不等式(组)解决实际问题 - 4 -
五、解题技巧 - 5 -
1、有解无解问题: - 5 -
2、特征解问题: - 5 -
六、典题练习 - 5 -
第八章整式乘除与因式分解 - 6 -
一、幂的运算: - 6 -
二、整式乘法: - 6 -
三、完全平方公式与平法差公式 - 7 -
四、整式除法 - 7 -
五、因式分解 - 7 -
六、典题练习 - 8 -
第九章分式 - 8 -
一、分式及其性质 - 8 -
二、分式运算 - 9 -
三、分式方程 - 9 -
四、分式应用 - 9 -
五、分式解题中常用的数学思想和技巧 - 9 -
六、典题练行线与平移 - 12 -
一、相交线 - 12 -
二、平行线 - 12 -
三、平移 - 13 -
七年级数学(下)期末复习
前言
数学是一门研究数量、结构、变化以及空间模型等概念的学科;数学解题的关键就是知识和方法;知识是锁眼,方法是钥匙。缺少哪个都不能打开题目这把锁;那么我们的数学学习也要针对这两点进行。
掌握课本知识内容及内涵
数学知识是数学解题的基石。只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。
二、多看例题
数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:
看一道例题,解决一类问题。不能只看皮毛,不看内涵。我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!
我们不仅要看例题还要会总结,总结题型、解题思路和方法。运用了哪些数学思想。最好把总结的写出来。以后复习时再看,就事半功倍了。
会模仿,也要创新。在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。我们最后看哪种方法更简便。
三、多做练习
“多”讲的是题型多,不是题目数量多。不怕难题,就怕生题。题海战术不一定好,但是接触的题型多了,总结的解题方法多了。以后遇到相同类型的题目也就不怕了。
四、心细,多思,善问,勤总结
数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。
在数学学习过程中,我们要会总结,还要勤总结。多总结知识内容,总结解题方法,解题思想。一方面能够起到复习巩固的作用,另一方面能提高自己的自学能力。
数学的四大思维体系:数形结合、函数思想、分类讨论、方程思想。
第六章实数
一、平方根与立方根
1、平方根
(1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。
(2)表示:非负数a的平方根记作± ,读作“正负根号a”,(a叫做被开方数)
(3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。
(4)开平方:求平方根的运算叫做开平方。
Ⅰ、平方根是开平方的结果;Ⅱ、开平方与平方互为逆运算。
2、算术平方根
(1)定义:正数a的正的平方根叫做a的算术平方根,0的算术平方根是0。
(2)性质:(1)一个数a的算术平方根具有非负性; 即:≥0恒成立。
(2)正数的算术平方根只有1个,且为正数;0的算术平方根是0;
负数的没有算术平方根。
3、立方根
(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。
(2)表示:a的立方根记作,读作“三次根号a”(a叫做被开方数,3叫根指数)
(3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。
二、实数
1、无理数:无限不循环的小数。(一个无理数与若干有理数之间的运算结果还是无理数)
2、实数:有理数和无理数统称为实数。
3、实数分类:(1)按定义分(略) (2)按正负性分(略)
4、实数与数轴上的点一一对应。
5、实数的相反数、