文档介绍:八年级下科学知识点整理
第一章电与磁
1、奥斯特实验:通电导线的周围存在磁场,称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。
该现象说明:通电导线的周围存在磁场,且磁场与电流的方向有关。
2、通电螺线管的磁场:通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则(也叫右手螺旋定则)来判断。
判断通电直导线周围磁感线环绕方向的方法:
A:通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;它同样也适用于判断通电螺线管的南北极;
B:通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
通过比较我们可以得出,这两种安培定则的话实际上都可以说成是右手螺旋定则,只不过四指环绕方向分别代表磁感线方向和电流方向;而拇指方向则代表电流方向和通电螺线管的N极方向。
为了方便理解,我们可以总结为:四指弯曲方向为环绕方向,大拇指所指方向为通电直导线中的电流方向或者通电螺线管的N极方向。
3、电磁铁:带铁芯的通电螺线管就是电磁铁。
原理:利用电流来控制电磁铁的磁性。接通螺线管中的电流,电磁铁产生磁性;断开电磁铁中
的电流,电磁铁就没有磁性。
应用:电铃、电磁继电器、电磁选矿机、电磁起重机、磁悬浮列车等。
4、电磁继电器:由电磁铁控制的自由开关。
作用:利用电磁继电器可用低电压和弱电流
来控制高电压和强电流。
实质:利用一个接低压电源的通电螺线管(控制电铃)控制由磁铁制成的开关的断开与闭合,从而达到控制高压电路(工作电路)的目的。
5、直流电动机:
【问题】怎样使线圈在转过平衡位置后继续沿原来的方向转动下去?
1. 直流电动机靠直流电源供电,是利用通电线圈在磁场里受到力的作用而转动的现象制成的,是把电能转化为机械能的装置。
2. 直流电动机主要由磁铁和线圈组成,此外还有换向器、电刷等。
3. 换向器的作用:每当线圈转过平衡位置时,它能自动改变线圈中的电流方向。
(1)换向器是怎样实现“换向”的?
用直流电源给处在磁场中的线圈通电时,要使线圈能绕轴连续转动的关键,就在于使线圈一转到平衡位置就能自动改变线圈中的电流方向,换向器就是能完成这一任务的装置。
①换向器由两个半铜环组成。
②当线圈由于惯性稍稍转过平衡位置时,能交换电刷与换向器的半铜环的接触,从而改变了线圈中的电流方向和受力方向,使线圈仍能按原来的绕向转动。如下图分解:
(2)交流电动机也是依靠通电导体在磁场中所受的力来运转的。和直流电动机一样,都由定子、转子两个基本部分组成。
(3)电动机的优点:构造简单、控制方便、效率高、无污染。
【小结】
1. 电动机原理:通电线圈在磁场里受力而转动;
2. 直流电动机:利用直流电源供电的电动机叫直流电动机;
3. 直流电动机的组成:由磁体、线圈、换向器和电刷组成,实际的电动机由转子和定子两个基本部分组成;
4. 换向器的结构和作用:
结构:由两个铜半环构成
作用:每当线圈转过平衡位置时,就会自动改变线圈中电流的方向;
5. 能量转化:电动机工作时把电能转化为机械能。
2、【探究】感应电流的大小与哪些因素有关
猜测:①导线切割磁感线运动的速度大小;②导线切割磁感线运动的速度方向;③永磁铁的磁场强度;④切割导线的条数;⑤切割磁感线的导线的有效长度;等等。
实验设计和验证:控制变量法
实验结论:导线切割磁感线运动的速度大,电流大;永磁铁的磁场强度大,电流大;切割导线的条数多,电流大;切割磁感线的导线的有效长度长,电流大。感应电流的大小与导线切割磁感线运动的速度方向也有关。
6、交流发电机的工作原理:
1、矩形线圈、圆环、电刷、电流表组成了闭合电路。当线圈在磁场中转动时,切割磁感线,线圈中产生感应电流。
2、分析线圈运动到几个特殊位置时产生感应电流的情况:
上图是发电机的整个工作工程的分解图。
①当线圈平面和磁感线垂直时,线圈两边的运动方向和磁感线平行,不切割磁感线,线圈上无感应电流。
②当线圈平面和磁感线平行时,线圈两边的运动方向和磁感线垂直,切割磁感线,线圈上有感应电流。(注意两次的切割磁感线方向及电流方向的改变)
3、线圈在磁场转动一周,感应电流方向改变两次;线圈不断转动,则感应电流方向不断作周期性变化。这种周期性改变方向的电流就是交流电。
交流电跟我们从电池得到的电流有所不同,从电池得到的电流的方向不变,通常叫做直流电。
4、实际使用的大型交流发电机结构与模型有所不同,但仍是由转子和定子两部分组成。一般采用线圈不动、磁极旋转的方