文档介绍:专题五:解析几何
【备考策略】
根据近几年高考命题特点和规律,复习本专题时,要注意以下几个方面:[来源:]
、斜率及它们间的关系。
。
、两平行线间的距离。
(标准方程和一般方程)。
。
、双曲线、抛物线的定义、性质。
,同时常与平面向量、数列、不等式结合,且每年必考。
第一讲直线与圆
【最新考纲透析】
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
(3)能根据两条直线的斜率判定这两条直线平行或垂直。[来源:]
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
(5)能用解方程组的方法求两条相交直线的交点坐标。
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
(3)能用直线和圆的方程解决一些简单的问题。
(4)初步了解用代数方法处理几何问题的思想。
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置。
(2)会推导空间两点间的距离公式。
【核心要点突破】
要点考向1:直线的倾斜角、斜率、距离问题
考情聚焦:、斜率、距离问题是最基本问题,是高考中常考的知识。
,体现知识的交汇。
、填空题的形式考查,属容易题。
考向链接:。已知斜率求倾斜角时,通常可以结合正切函数的图象求解,要注意当斜率的取值范围有正有负时,倾斜角是分段的,如直线斜率的范围是[-1,1],则倾斜角的取值范围是,而不是
,并能灵活运用。
例1:若直线被两平行线所截得的线段的长为,则的倾斜角可以是:
①②③④⑤
其中正确答案的序号是.(写出所有正确答案的序号)
【解析】两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。故填写①⑤
答案:①⑤
要点考向2:两直线的位置关系
考情聚焦:——平行或垂直是高考考查的重点内容。[来源:][来源:学|科|网]
、填空题的形式呈现,属容易题。
考向链接:两条直线和平行充要条件为
且垂直的充要条件为0,要熟练掌握这一条件。判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况。
例2:(2010·安徽高考文科·T4)过点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0
【命题立意】本题主要考查直线平行问题。
【思路点拨】可设所求直线方程为,代入点(1,0)得值,进而得直线方程。
【规范解答】选A,设直线方程为,又经过,故,所求方程为,
要点考向3:圆的方程
聚焦考情:,是高考中的必考内容。
,属中低档题。
考向链接:求圆的方程一般有两类方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数。其一般步骤是:
①根据题意选择方程的形式:标准形式或一般形式;
②利用条件列出关于的方程组;
③解出,代入标准方程或一般方程。
此外,根据条件,要尽量减少参数设方程,这样可减少运算量。
例3:(2010·广东高考文科·T6)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是( )
A. B.
C. D.
【命题立意】本题考察直线与圆的位置关系.
【思路点拨】由切线的性质:圆心到切线的距离等于半径求解.
【规范解答】选设圆心为,则,解得,所以,所求圆的方程为:,故选.
要点考向4:直线和圆的位置关系
聚焦考情:,有时和向量相结合,体现了知识的交汇。[来源:学科网ZXXK]
、填空题,也可以是解答题,属中、低档题目。
例4:(2010·重庆高考文科·T8)若直线与曲线,()有两个不同的公共点,则实数的取值范围为( )