文档介绍:常见排序算法总结【转载+整合】
2009-09-14 15:17
1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。要注意的是,排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。
2、内排序和外排序
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
=======================================
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
①.直接插入排序(稳定)
     接插入排序的过程为:在插入第i个记录时,R1,R2,..Ri-1已经排好序,将第i个记录的排序码Ki依次和R1,R2,..,Ri-1的排序码逐个进行比较,找到适当的位置。使用直接插入排序,对于具有n个记录的文件,要进行n-1趟排序。
代码如下:
void Dir_Insert(int A[],int N)   //直接插入排序
{
     int j,t;
     for(int i=1;i<N;i++)
     {
         t=A[i];
         j=i-1;
         while(A[j]>t)
         {
             A[j+1]=A[j];
             j--;
         }
         A[j+1]=t;
     }
}
②.希尔排序(不稳定):
     希尔(Shell)排序的基本思想是:先取一个小于n的整数d1作为第一个增量把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取得第二个增量d2<d1重复上述的分组和排序,直至所取的增量di=1,即所有记录放在同一组中进行直接插入排序为止。该方法实质上是一种分组插入方法。
     一般取d1=n/2,di
+1=di/2。如果结果为偶数,则加1,保证di为奇数。
     希尔排序是不稳定的,希尔排序的执行时间依赖于增量序列,其平均时间复杂度为O(n^).
代码如下:
void Shell(int A[],int n)   //Shell排序
{
     int i,j,k,t;
     (n/2)%2 == 0 ? k = n/2+1 : k = n/2; //保证增量为奇数
     while(k > 0)
     {
         for(j=k;j<n; j++)
         {
             t = A[j];
             i = j - k;
             while(i>=0 && A[i]>t)
             {
                 A[i+k]=