文档介绍:解析式
y=sinx
y=cosx
y=tanx
定义域
值域
则x=4t,y=-3t,
r=|t|,[来源:学科网]
当t>0时,r=5t,
sin=,cos=,
tan=;
当t<0时,r=-5t,sin=,
cos=,
tan=.
综上可知,t>0时,sin=,cos=,tan=;
t<0时,sin=,cos=-,tan=.
变式训练3:已知角的终边经过点P,试判断角所在的象限,并求的值.
解:由题意,得
故角是第二或第三象限角.
当,点P的坐标为,
当,点P的坐标为,
例4. 已知一扇形中心角为α,所在圆半径为R.
(1) 若α,R=2cm,求扇形的弧长及该弧所在弓形面积;
(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.
解:(1)设弧长为l,弓形面积为S弓。
△=
=(cm2)
扇形周长∴
∴
当且仅当22=4,即α=2时扇形面积最大为.
变式训练4:扇形OAB的面积是1cm2,它的周长是4cm,求中心角的弧度数和弦长AB.
解:设扇形的半径为r,弧长为l,中心角的弧度数为α
则有∴
由|α|=得α=2 ∴|AB|=2·sin 1( cm )
小结归纳
,也是后续结论的根源所在,要求掌握好:如角度的范围、函数的定义、函数值的符号、函数值的大小关系及它们之间的相互转化关系.
,常常要对角的范围以及相应的三角函数值的正负情况进行讨论,因此,在解答这类题时首先要弄清:①角的范围是什么?②对应的三角函数值是正还是负?③与此相关的定义、性质或公式有哪些?