1 / 15
文档名称:

机器人路径规划毕业论文外文翻译.doc

格式:doc   大小:408KB   页数:15页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

机器人路径规划毕业论文外文翻译.doc

上传人:253214894 2018/9/17 文件大小:408 KB

下载得到文件列表

机器人路径规划毕业论文外文翻译.doc

相关文档

文档介绍

文档介绍:外文文献:
Space Robot Path Planning
for Collision Avoidance
Yuya Yanoshita and Shinichi Tsuda
Abstract — This paper deals with a path planning of space robot which includes a collision avoidance algorithm. For the future space robot operation, autonomous and self-contained path planning is mandatory to capture a target without the aid of ground station. Especially the collision avoidance with target itself must be always considered. Once the location, shape and grasp point of the target are identified, those will be expressed in the configuration space. And in this paper a potential method.
Laplace potential function is applied to obtain the path in the configuration space in order to avoid so-called deadlock phenomenon. Improvement on the generation of the path has been observed by applying path smoothing method, which utilizes the spline function interpolation. This reduces putational load and generates the smooth path of the space robot. The validity of this approach is shown by a few numerical simulations.
Key Words —Space Robot, Path Planning, Collision Avoidance, Potential Function, Spline Interpolation
I. INTRODUCTION
In the future space development, the space robot and its autonomy will be key features of the space technology. The space robot will play roles to construct space structures and perform inspections and maintenance of spacecrafts. These operations are expected to be performed in an autonomous.
In the above space robot operations, a basic and important task is to capture free flying targets on orbit by the robotic arm. For the safe capturing operation, it will be required to move the arm from initial posture to final posture without collisions with the target.
The configuration space and artificial potential methods are often applied to the operation planning of the usual robot. This enables the robot arm to evade the obstacle and to move toward the target. Khatib proposed a motion planning method, in which between each link of the robot an