文档介绍:新湘教版七年级数学上册知识点总结
第一章:有理数总复习
一、有理数的基本概念
:大于0的数叫做正数;例如:3, ,
负数:小于0的数叫做负数。例如:
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。(我们把正数和0统称为非负数)
:整数和分数统称有理数。(有理数是指有限小数和无限循环小数。切记:)
:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;
(2)正数都大于0,负数都小于0;正数大于一切负数;
(3)所有有理数都可以用数轴上的点表示。
相反数:只有符号不同的两个数,其中一个是另一个的相反数。例如:5与-5 。
性质:(1)数a的相反数是-a(a是任意一个有理数) 。例如:
(2)0的相反数是0;
(3)若a、b互为相反数,则a+b=0;
倒数:乘积是1的两个数互为倒数。
性质:(1)a的倒数是(a≠0); (2)0没有倒数;
(3)若a与b互为倒数,则ab=1;
6、倒数与相反数的区别和联系:
(1)与-互为相反数; 与(≠ 0)互为倒数;
(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;
(3)a、b互为相反数,则 a+b=0;a、b互为倒数则 ab=1;
(4)相反数是本身的数是0,倒数是本身的数是±1 。
:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
性质:(1)数a的绝对值记作︱a︱。例如:
(2)若a>0,则︱a︱= a;即正数的绝对值是它本身。
若a<0,则︱a︱= -a;负数的绝对值是它的相反数;
若a =0,则︱a︱=0;0的绝对值是0.
(3) 对任何有理数a,总有︱a︱≥0.
有理数大小的比较:
可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;
两个负数,绝对值大的反而小。例如:
:把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。其中1≤|a|<10,n为正整数, n等于原数的整数位数减去1。例如:
二、有理数的运算
1、运算法则:
(1)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③一个数同0相加,仍得这个数。(即:任意两个数相加,符号看大数字的。符号相同,数字相加;符号不同,数字相减。)
(2)有理数减法法则:减去一个数,等于加上这个数的相反数。即a-b=a+(-b)。
(3)有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。规律:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。②几个数相乘,有一个因数为0,积就为0。
(4)有理数除法法则:①除以一个数等于乘上这个数的倒数;即(b≠0);
②两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0。
(5)有理数的乘方
①求n