文档介绍:黄冈中学高考数学压轴100题
目录
2
2 复合函数 4
6
12
——不等式 13
20
7. 函数与数列综合 22
33
9. Sn与an的关系 38
41
—不等式 43
47
49
52
56
16 解析几何中的参数范围问题 58
17 解析几何中的最值问题 64
18 解析几何中的定值问题 67
19 解析几何与向量 70
20 探索问题 77
(1), 110
(2) 110
1. 对于函数,若存在实数,使成立,则称为的不动点.
(1)当时,求的不动点;
(2)若对于任何实数,函数恒有两个相异的不动点,求实数的取值范围;
(3)在(2)的条件下,若的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.
分析本题考查二次函数的性质、直线等基础知识,及综合分析问题的能力
函数与方程思想
解: ,
(1)当时,.
设为其不动点,即,,即的不动点是.
(2)由得.
由已知,此方程有相异二实根,所以,即对任意恒成立.
,.
(3)设,直线是线段的垂直平分线,.
记的中点,由(2)知.
在上,
化简得:,当时,等号成立.
即
例2 已知函数,若对任意,且,都有.
(Ⅰ)求实数的取值范围;
(Ⅱ)对于给定的实数,有一个最小的负数,使得时,都成立,则当为何值时,最小,并求出的最小值.
解:(Ⅰ)∵,
∵,∴.∴实数的取值范围为.
(Ⅱ)∵,显然,对称轴。
(1)当,即时,,且.
令,解得,
此时取较大的根,即,∵,∴.
(2)当,即时,,且.
令,解得,此时取较小的根,即,
∵,∴. 当且仅当时,取等号.
∵,∴当时,取得最小值-3.
2 复合函数
,其中,且。
(1)对于函数,当时,,求实数m的取值范围;
(2)当时,的取值范围恰为,求的取值范围。
解: 且
设,则∴∴
当时,∵∴在其定义域上
当时,∵,, ∴在其定义域上
∴且,都有为其定义域上的增函数
又∵∴为奇函数
(1)∵当时,∴
∴
(2)当时,∵在上,且值域为∴
∴
例2. 函数是的反函数,的图象与函数的图象关于直线成轴对称图形,记。
(1)求的解析式及其定义域;(2)试问的图象上是否存在两个不同的点A、B,使直线AB恰好与轴垂直?若存在,求出A、B的坐标;若不存在,说明理由。
解:(1) ∴
∵的图象与的图象关于直线成轴对称图形
∴的图象与的图象关于直线对称
即:是的反函数
∴∴
∴
(2)假设在的图象上存在不同的两点A、B使得轴,即使得方程有两不等实根
设,则在(,1)上且
∴, ∴使得方程有两不等正根
设,
由函数图象可知:,方程仅有唯一正根∴不存在点A、B符合题意。
3. 设且为自然对数的底数,函数f( x)
(1)求证:当时,对一切非负实数x恒成立;
(2)对于(0,1)内的任意常数a,是否存在与a 有关的正常数,使得成立?如果存在,求出一个符合条件的;否则说明理由.
分析:本题主要考查函数的单调性,导数的应用等基础知识,、化归(转化)思想方法
解:(1)当令
上单调递增,
(2)(1),
需求一个,使(1)成立,只要求出的最小值,满足
上↓
在↑,
只需证明内成立即可,
令
为增函数
,故存在与a有关的正常数使(1)成立。
(b、c为实常数)。记,,.令.
(Ⅰ)如果函数在处有极值,试确定b、c的值;
(Ⅱ)求曲线上斜率为c的切线与该曲线的公共点;
(Ⅲ)、c 恒成立,试示的最大值。
解:∵∴
(Ⅰ)由在处有极值,可得
,解得或
若,则,此时没有极值;
若,则。
当变化时,、的变化情况如下表:
0
+
单调递减
极小值-12
单调递增
极大值
单调递减
∴当是,有极大值,故即为所求。
(Ⅱ)设曲线在处的切线的斜率为,
∵,∴,即。解得或。
若,则,得切点为,切线方程为;
若,则,得切点为,切线方程为。
若,解得,,
则此时切线与曲线的公共点为,;
(2)若,
解得,,此时切线与曲线的公共点为,。
综合可知,当时,斜率为c的切线与曲线有且只有一个公共点;当,斜率为c的切线与曲线有两个不同的公共点,分别为和或,。
(Ⅲ)
(1)当时,