文档介绍:¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的判定,掌握直线与平面平行判定定理,掌握转化思想“线线平行线面平行”.
¤知识要点:
1. 定义:直线和平面没有公共点,则直线和平面平行.
2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.
符号表示为:. 图形如右图所示.
¤例题精讲:
【例1】已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF∥平面PEC
【例2】在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、C1D1的中点. 求证:EF∥平面BB1D1D.
【例3】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN//平面PAD;
(2)若,,求异面直线PA与MN所成的角的大小.
.
第13讲§ 平面与平面平行的判定
¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的判定,掌握两个平面平行的判定定理与应用及转化的思想.
¤知识要点:
面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,:.
¤例题精讲:
【例1】如右图,在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥平面A1BD.
N
M
P
D
C
Q
B
A
.
【例2】已知四棱锥P-ABCD中, 底面ABCD为平行四边形. 点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD.
求证:平面MNQ∥平面PBC.
第14讲§ 直线与平面平行的性质
¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的性质,掌握直线和平面平行的性质定理,灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.
¤知识要点:
β
线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
即:.
¤例题精讲:
【例1】经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B
【例2】如右图,平行四边形EFGH的分别在空间四边形ABCD各边上,求证:BD//平面EFGH.
第15讲§ 平面与平面平行的性质
¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的性质,掌握面面平行的性质定理,灵活运用面面平行的判定定理和性质定理,掌握“线线”“线面”“面面”平行的转化.
¤知识要点:
1. 面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 用符号语言表示为:.
2. 其它性质:①; ②;
③夹在平行平面间的平行线段相等.
¤例题精讲:
【例1】如图,设平面α∥平面β,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β. 求证:MN∥α.
【例4】如图,已知正方体中,面对角线,上分别有两点E、F,且. 求证:EF∥平面ABCD.
第16讲