文档介绍:第12讲§¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的判定,掌握直线与平面平行判定定理,掌握转化思想“线线平行线面平行”.¤知识要点::直线和平面没有公共点,:平面外的一条直线与此平面内的一条直线平行,:.图形如右图所示.¤例题精讲:【例1】已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF∥平面PEC【例2】在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、:EF∥平面BB1D1D.【例3】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN//平面PAD;(2)若,,求异面直线PA与MN所成的角的大小..第13讲§¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的判定,掌握两个平面平行的判定定理与应用及转化的思想.¤知识要点:面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,:.¤例题精讲:【例1】如右图,在正方体ABCD—A1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP∥.【例2】已知四棱锥P-ABCD中,、N、Q分别在PA、BD、PD上,且PM:MA=BN:ND=PQ::平面MNQ∥§¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的性质,掌握直线和平面平行的性质定理,灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.¤知识要点:β线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,:.¤例题精讲:【例1】经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B【例2】如右图,平行四边形EFGH的分别在空间四边形ABCD各边上,求证:BD//§¤学习目标:通过直观感知、操作确认、思辨论证,认识和理解空间中面面平行的性质,掌握面面平行的性质定理,灵活运用面面平行的判定定理和性质定理,掌握“线线”“线面”“面面”平行的转化.¤知识要点::如果两个平行平面同时与第三个平面相交,:.:①;②;③夹在平行平面间的平行线段相等.¤例题精讲:【例1】如图,设平面α∥平面β,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈:MN∥α.【例4】如图,已知正方体中,面对角线,上分别有两点E、F,:EF∥§¤学习目标:以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定,掌握直线与平面垂直的定义,理解直线与平面垂直的