文档介绍:1. 国内外研究现状
机械手起源于20世纪50年代,是基于示教再现和主从控制方式,能适应产品种类变更,具有多自由度动作功能的柔性自动化设备[3],也是典型机电一体化产品。其中,通用机械手具有独立的控制系统,程序多变,动作灵活多变等特点,在中小批量的自动化生产中得到大量应用。
近年来,在我国,随着气动技术的迅速发展,气动元件及气动自动化技术已经越来越多的应用于机械手中,构成了气动机械手。气动机械手的最大优势就是低成本,模块化和集成化[4]。气动机械手包含感知部分,控制部分和主机部分三方面。采集感应信号及控制信号均由智能阀岛处理;气动伺服定位系统代替伺服电机,步进马达或液压伺服系统;汽缸,摆动马达完成原来由液压缸或机械部分所做的执行动作。主机部分采用了标准型辅以模块化的装配形式,使得气动机械手能拓展成系列化和标准化的产品。在国外,像日本,美国,德国等国家,以微型内置伺服电机作为控制系统主动力的精密机械手,则是世界自动化领域中更深高次的发展。相对一般的工业领域机械手,这种精密型的机械手具有动作精度高,体积相对小巧,高度智能化的特点[5],被广泛应用于水下精密作业,人体内部手术作业,农业果实采摘等领域。由于这种类型的机械手更突出的要求是精密型,故其整体结构为多关节、多驱动型,每个关节都有独立伺服电机作为驱动源,这些伺服电机则由躯干内部的PLC等核心处理器做统一控制管理,以达到灵活多变的控制要求。
现今使用的机械手主要可分为极坐标型机械手和关节型机械手,这两种机械手可以提供较大的工作空间[6],恰好可以满足一般的机械手在工作空间上的要求。韩国最早开发的用于果实采摘的极坐标机械手臂,旋转关节可以自由移动,丝杠关节可以上下移动,从而使作业空间达到3m[7]。日本东都大学也在20世纪80年代研制出了5自由度关节型机械手[8]。实验表明这种机械手在运动空间上虽然没有极坐标机械手到位,且末端执行器的可操作能力较低,但结构相对简单,工作更加灵活,在不需要较复杂操作的工作环境下,体现出一定优势[9][10]。京都大学在此基础上又开发出了7个自由度的机械手[11],解决了其相对极坐标机械手在工作空间上不足的缺点,在关节型机械手领域达到了一个更高的高度。
机械手可以模仿人手的某些动作和功能,用固定的程序和轨迹完成抓取、搬运物件等操作。特别是在当前劳工紧缺,劳动力成本日益提高的社会背景下,机械手的使用可以替代人的繁重劳动,实现工业自动化的同时也大大减少了企业的生产成本,提高企业效益。同时,由于它可在高温、高压、多粉尘、易燃易爆、放射性等恶劣或危险环境下,替代人类作业保护工人的人身安全,因而被广泛应用于机械制造、冶金、电子、轻工和原子能工业等部门
[12]。
机械手的工作环境是非结构的开放系统[13],涉及到多门学科知识,不同的工作场合和不同的工作对象给机械手的研制特别是末端执行机构的研制带来了无限的空间和全新的挑战。机械手在某种程度和场合上代替了人类的大量工作,但是它的使用却并没有达到广泛普及的程度,这主要是由于存在2个关键的问题[14]:一方面,机械手的智能化程度没有达到工业生产的要求。工业生产的特点需要机械手具有相当高的智能和柔性作业的能力以适应复杂的非结构环境;另一方面,购买和研制机械手成本高,会加重企业的生产成本,而且其工作范围较局限,机械手的