1 / 13
文档名称:

三元-次方程和解法.doc

格式:doc   大小:153KB   页数:13页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

三元-次方程和解法.doc

上传人:2028423509 2019/1/9 文件大小:153 KB

下载得到文件列表

三元-次方程和解法.doc

相关文档

文档介绍

文档介绍:三元一次方程组及其解法
:含有三个未知数的一次整式方程
:由三个一次方程(一元、二元或三元)组成并含有三个未知数的方程组叫做三元一次方程组
3. 三元一次方程组的解:能使三个方程左右两边都成立的三个未知数的值
解题思路:利用消元思想使三元变二元,再变一元
三元一次方程组的解法:用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程.
例题解析
一、三元一次方程组之特殊型
例1:解方程组
分析:方程③是关于x的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x”的目标。
解法1:代入法,消x.
把③分别代入①、②得
解得
把y=2代入③,得x=8.
∴是原方程组的解.
根据方程组的特点,可归纳出此类方程组为:
类型一:有表达式,用代入法型.
针对上例进而分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的。
解法2:消z.
①×5得 5x+5y+5z=60 ④
④-②得 4x+3y=38 ⑤
由③、⑤得
解得
把x=8,y=2代入①得z=2.
∴是原方程组的解.
根据方程组的特点,可归纳出此类方程组为:
类型二:缺某元,消某元型.
例2:解方程组
分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。
解:由①+②+③得4x+4y+4z=48,
即x+y+z=12 .④
①-④得 x=3,
②-④得 y=4,
③-④得 z=5,
∴是原方程组的解.
典型例题举例:解方程组
解:由①+②+③得2(x+y+z)=60 ,
即x+y+z=30 .④
④-①得 z=10,
④-②得 y=11,
④-③得 x=9,
∴是原方程组的解.
根据方程组的特点,由学生归纳出此类方程组为:
类型三:轮换方程组,求和作差型.
例3:解方程组
分析1:观察此方程组的特点是未知项间存在着比例关系,根据以往的经验,看见比例式就会想把比例式化成关系式求解,即由x:y=1:2得y=2x; 由x:z=1:7得z=,即,根据方程组的特点,可选用“有表达式,用代入法”求解。
解法1:由①得y=2x,z=7x ,并代入②,得x=1.
把x=1,代入y=2x,得y=2;
把x=1,代入z=7x,得 z=7.
∴是原方程组的解.
分析2:由以往知识可知遇比例式时,可设一份为参数k,因此由方程①x:y:z=1:2:7,可设为x=k,y=2k,z=,并把三元通过设参数的形式转化为一元,可谓一举多得。
解法2:由①设x=k,y=2k,z=7k,并代入②,得k=1.
把k=1,代入x=k,得x=1;
把k=1,代入y=2k,得y=2;
把k=1,代入z=7k,得 z=7.
∴是原方程组的解.
典型例题举例:解方程组
分析1:观察此方程组的特点是方程②、③中未知项间存在着比例关系,由例3的解题经验,易选择将比例式化成关系式求解,即由②得x = y; 由③得z=
.从而利用代入法求解。
解法1:略.
分析2:受例3解法2的启发,想使用设参数的方法求解,但如何将②、③转化为x:y:z的形式呢?通过观察发现②、③中都有y项,所以把它作为桥梁,先确定未知项y比值的最小公倍数为15,由②×5得y:x=15:10 ,由③×3得y:z=15:12,于是得到x:y:z=10:15:12,转化为学生熟悉的方程组形式,就能解决了。
解法2:由②、③得 x:y:z=10:15:12.
设x=10k,y=15k,z=12k,并代入①,得k=3.
把k=3,代入x=10k,得x=30;
把k=3,代入y=15k,得y=45;
把k=3,代入z=12k,得 z=36.
∴是原方程组的解.
根据方程组的特点,由学生归纳出此类方程组为:
类型四:遇比例式找关系式,遇比设元型.
二、三元一次方程组之一般型
例4:解方程组
分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”,为此归纳出:
消元的选择
;

方程式的选择
采取用不同符号标明所用方程,体现出两次消元的过程选择。
解:
(明确消z,并在方