文档介绍:《数字图像处理和模式识别》期末大作业
题目: 车牌定位
班级: 计算机应用技术
姓名: 杭文龙
学号: 6121602005
引言
选题意义
汽车牌照自动识别系统是以汽车牌照为特定目标的专用计算机视觉系统,是计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节,它可广泛应用于交通流量检测,交通控制与诱导,机场、港口、小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。目前,发达国家LPR(汽车牌照识别技术License Plate Recognition, LPR,简称“车牌通”)系统在实际交通系统中已成功应用,而我国的开发应用进展缓慢,车牌识别系统基本上还停留在实验室阶段。基于这种现状还有它广阔的应用前景,目前对汽车车牌的识别研究就有了深远的意义。
课题组成
汽车车牌的识别过程主要包括车牌定位、字符车牌分割和车牌字符识别三个关键环节。我在此文章中就只说明其中一点,就是车牌定位,其流程如下:
原始图像
图像预处理
边缘提取
车牌定位
原始图像:由数码相机或其它扫描装置拍摄到的图像
图像预处理:对动态采集到的图像进行滤波,边界增强等处理以克服图像干扰
边缘提取:通过微分运算,2值化处理,得到图像的边缘
车牌定位:计算边缘图像的投影面积,寻找峰谷点,大致确定车牌位置,再计算此连通域内的宽高比,剔除不在域值范围内的连通域。最后得到的便为车牌区域。
本文以一幅汽车图像为例,结合图像处理各方面的知识,利用MATLAB编程,实现了从车牌的预处理到字符识别的完整过程。各部分的处理情况如下:
预处理及边缘提取
图1 汽车原图
图像在形成、传输或变换过程中,受多种因素的影响,如:光学系统失真、系统噪声、暴光不足或过量、相对运动等,往往会与原始景物之间或图像与原始图像之间产生了某种差异,这种差异称为降质或退化。这种降质或退化对我们的处理往往会造成影响。因此在图像处理之前必须进行预处理,包括去除噪音,边界增强,增加亮度等等。
因为噪声主要是一些含高频的突变成分,因此可以通过一个低通滤波器来消除图像中包含的噪声,并使低频成分得到增强。滤波的方式有两种,一种是空间域滤波,一种是频率域滤波。在空间域,常见的滤波方式有两种方式,均值滤波和中值滤波。空间域滤波主要有巴特沃斯滤波器。在车牌边缘提取之前,两种滤波方式均采用了。并与未进行滤波的边缘进行比较。以下是经处理后的一些图片。
图2 梯度锐化后得到的区域
图3 经过滤波后的黄色区域
图4 经区域膨胀后得到的图像
图5 车牌区域加深
本次汽车车牌的识别,为了保存更多的有用信息,经过多次比较,选择图4作为后期处理的依据。边缘的提取采用的是梯度算子,因为其实现过程比较简单,所以在此不多加赘述了。
提取出的边缘含有多个灰度值,要进行二值化处理,选择一个合适的域值。经多次比较,选取域值T=70,对于灰度值大于T的赋值为255,小于T的赋值为0。
经过边缘提取得到的图像,车牌区域在水平方向灰度面积值具有明显频繁的跳变,在垂直方向上的面积投影则出现峰-谷-峰的特性。根据这种峰谷特点,自动检测车牌位置峰点检测的车牌区域