文档介绍:无功补偿的原理和应用关键词:无功补偿谐波功率因数容性无功感性负载无功补偿的应用轧机及其他大型电机对称负载引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率,使功率因数降低;负载在传动装置中会产生有害的高次谐波,主要是以5、7、11、13次为代表的奇次谐波及旁频,会使电网电压产生严重畸变。安装SVC系统可解决上述问题,保持母线电压平稳,无谐波干扰,功率因数接近1。(2)电弧炉作为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要影响有:导致电网三相严重不平衡,产生负序电流,产生高次谐波,其中普遍存在如2、4偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更为复杂化,存在严重的电压闪变,功率因数低。SVC具有快速动态补偿、响应速度快的特点,它可向电弧炉快速提供无功电流并且稳定母线电网电压,最大限度地降低闪变的影响,SVC具有的分相补偿功能可以消除电弧炉造成的三相不平衡,滤波装置可以消除有害的高次谐波并通过向系统提供容性无功来提高功率因数。(3)电力机车供电:电力机车运输方式在保护环境的同时也对电网造成了严重的“污染”,因电力机车为单相供电,这种单相负荷造成供电网的严重三相不平衡及较低的功率因数,目前世界各国解决这一问题的唯一途径就是在铁路沿线适当位置安装SVC系统,通过SVC的分相快速补偿功能来平衡三相电网,并通过滤波装置来提高功率因数。城市二级变电站(66kv/10kv):在区域电网中,一般采用分级投切电容器组的方式来补偿系统无功,改善功率因数,这种方式只能向系统提供容性无功,并且不能随负载变化而实现快速精确调节,在保证母线功率因数的同时,容易造成向系统倒送无功,抬高母线电压,危害用电设备及系统稳定性等问题。TCR结合固定电容器组FC或者TCR+TSC可以快速精确的进行容性及感性无功补偿,稳定母线电压、提高功率因数。并且,在改造旧的补偿系统时,在原有的固定电容器组的基础上,只需增加晶闸管相控电抗器(TCR)部分即可,用最少的投资取得最佳的效果,成为改善区域电网供电质量的最有效方法。(5)远距离电力传输:全球电力目前正在趋向于大功率电网,长距离输电,高能量消耗,同时也迫使输配电系统不得不更加有效,SVC可以明显提高电力系统输配电性能,这已在世界范围内得到了广泛的证明,即当在不同的电网条件下,为保持一个平衡的电压时,可在电网的一处或多处适合的位置上安装SVC,以达到如下目的:1、稳定弱系统电压、减少传输损耗增加传输动力,使现有电网发挥最大功率提高瞬变稳态极限增加小干扰下的阻尼增强电压控制及稳定性缓冲功率振荡(6)矿用提升机:提升机作为大功率、频繁启动、周期性冲击负荷以及采用硅整流装置对电网造成的无功冲击和高次谐波污染等危害不仅危及电网安全,同时也造成提升机过电流、欠电压等紧停故障的发生,影响了矿井生产。因此对提升机供电系统进行无功动态补偿和高次谐波治理,对于提高矿井提升机和电网的安全运行可靠性、提高企业的经济效益意义巨大。提升机单机装机功率大,在矿井总供电负荷中占的比重较大。伴随煤矿生产规模的扩大、井筒的加深,要求配套的提升机装置容量也越来越大,单机容量已达到2000~3000kW,有的甚至达到5400kW,单斗提升装载量达34t。这么大的负载启动将对电网造成很大的冲击电流,无功电流成分较大,功率因数较低。所以大功