文档介绍:提高LED芯片出射效率的技术以目前的技术可以使InGaN有源层在常温,普通注入电流条件下的内量子效率达到90~95%。当温度升高,内量子效率会比较大的下降。因此要提高发光效率必须控制结温和提高出光效率。  1  提高LED芯片出射效率的技术  衬底激光剥离技术(Lift-off) 因为LED的GaAs基衬底的折射率非常大,所以它所造成的内部光吸收损失很大。这种方法将LED的GaAs衬底剥离,换成透明衬底,然后粘结在透明的GaP衬底上,使光从下底面出射。所以又被称为透明衬底LED(TS-LED)法。[4]理论上讲,这种方法可以提高光的出射率一倍。对于以蓝宝石衬底为主的GaAs系LED而言,其剥离技术(LLO)是基于GaN的同质外延发展的一项技术。GaN基半导体材料和器件发展的一个重大问题是由于没有合适的衬底而造成的外延层质量问题,解决这个问题的一种可能途径是利用对衬底透明的短脉冲激光照射衬底,融化缓冲层而将GaN外延层从宝石衬底上剥离下来,再用HVPE生长技术制成GaN衬底,用以实现同质外延。美国的惠普公司在上世纪末最先在AlGaInP/GaAsLED上实现;2002年,日亚正式把它用于UVLED的工艺上,使其发光效率得到很大的提高;2003年2月,德国OSRAM公司用LLO工艺将蓝宝石去除,将LED的出光效率提升至75%。图1:制作透明衬底用GaP代替GaAs (rystal) 光子晶体实际上就是一种将不同介电常数的介质在空间中按一定周期排列而形成的人造晶体,该排列周期为光波长量级。光子晶体中介质折射率的周期变化对光子的影响与半导体材料中周期性势场对电子的影响相类似。在半导体材料中,由于周期势场的作用电子会形成能带结构,带与带之间有带隙(如价带与导带),电子的能量如果落在带隙中,,由于介电常数在空间的周期性变化,,介质的布拉格散射也会产生带隙,(rystals)或光子带隙(PBG—photonicbandgap)材料。如果光子晶体只在一个方向上具有周期结构,,、二维光子晶体和三维光子晶体。在发光二极管的发光中心放一块光子晶体,使发光中心的自发辐射和光子带隙的频率重合,并在光子晶体中引入一缺陷态,自发辐射将不能沿其它方向传播,只能沿特定的通道传播,这将大大减少能量损失,且能通过控制缺陷态而成为单模发光二极管。如果人为地破坏光子晶体的周期性结构时,在光子晶体中加入杂质,光子禁带中会出现品质因子非常高的杂质态,具有很大的态密度,这样便可以实现自发辐射的增强,利用光子晶体可以控制原子的自发辐射的特性,可以制作宽频带、低损耗的光反射镜,可以制作高效率的发光二极管。实验已证明,发光效率可以达90%以上。°的角度从3个方向钻孔、各方向的夹角为120°。这是一种由许多面心立方体构成的空间周期性结构,也称为钻石结构。目前以z