文档介绍:2012届高三第一次月考试卷
数学(文科)
命题人: 廖洪波审题人: 罗欢
一、选择题:本大题共8小题,每小题5分,满分40分.
1、已知集合A={x},B={x},则AB=( )
(A) {x} (B){x} (C){x} (D){x}
2、“x=3”是“x2=9”的( )
(A)充分而不必要的条件(B)必要而不充分的条件
(C)充要条件(D)既不充分也不必要的条件
3、若是真命题,是假命题,则( )
(A)是真命题(B)是假命题(C)是真命题(D)是真命题
4、下列函数中,既是偶函数又在单调递增的函数是( )
(A) (B) (C) (D)
5、方程在内( )
(A)没有根(B)有且仅有一个根(C) 有且仅有两个根(D)有无穷多个根
6、如果,那么( )
(A) (B) (C) (D)
7、为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所有的点(     )
A. 向右平移3个单位长度,再向下平移1个单位长度
B. 向左平移3个单位长度,再向下平移1个单位长度
C. 向右平移3个单位长度,再向上平移1个单位长度
D. 向左平移3个单位长度,再向上平移1个单位长度
8、已知函数y= f (x) 的周期为2,当x时 f (x) =x2,那么函数y = f (x) 的图像与函数y =的图像的交点共有( )
(A)10个(B)9个(C)8个(D)1个
二、填空题:本大题共7小题,每小题5分,满分35分.
9、计算.
10、设是实数,命题“若,则”的逆否命题是;
11、设是定义在R上的奇函数,当x≤0时,=,则.
12、函数的定义域是.
13、若a>0, b>0, 且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于
14、曲线在点(0,1)处的切线方程为。
15、函数f (x)为奇函数且f (3x+1)的周期为3,f (1)=-1,则f (2006)等于=
三、解答题:本大题共6小题,、证明过程和演算步骤.
16(12分) 已知函数.
(1)若的解集为,求实数的值;
(2)在(1)的条件下,求函数f(x)在区间[0,3]的值域.
17(12分)已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域
18(12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.
(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?
(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.
19(13分)定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
20(13分)设函数的图象经过原点,在其图象上一点P(x,y)处的切线的斜率记为.
(1)若方程=0有两个实根分别为-2和4,求的表达式;
(2)若在区间[-1,3]上是单调递减函数,求的最小值.
21(13分