1 / 8
文档名称:

关联规则挖掘apriori算法综述。.docx

格式:docx   页数:8页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

关联规则挖掘apriori算法综述。.docx

上传人:s0012230 2015/12/1 文件大小:0 KB

下载得到文件列表

关联规则挖掘apriori算法综述。.docx

文档介绍

文档介绍:文献综述
课程名称: 科技写作与文献检索
完成题目: 关联规则挖掘Apriori算法综述
专业班级:
姓名: 学号:
完成时间: 批阅时间:
指导教师: 成绩:
关联规则挖掘Apriori算法综述
摘要: 关联规则挖掘是数据挖掘研究领域中的一个重要任务,随着大量数据不停的收集和存储,从数据库中挖掘关联规则变得极为重要。关联规则挖掘Apriori算法是关联规则挖掘中的一种经典算法。为此,本文对国内外有关 Apriori 算法的研究现状、算法的原理、优化算法的思想进行了探讨,综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未Apriori算法的研究方向和应用发展趋势。
关键词:关联规则;数据挖掘;Apriori算法;综述
Abstract:The associative rule mining technique is an important technique in data mining research. Apriori algorithm is a classical algorithm of associative rules. How to dig out the rules of the associated data set from the database in the IT development process is important with increasing of massive data collection and storage. In this paper the principles and optimization idea of Apriori algorithm are discussed and several classical optimization algorithms are analyzed at the same time. Finally the trends of future development are forecasted.
Key words:associative rules;massive data;optimization;developmental trends
引言
数据挖掘也称数据库中的知识发现,是指从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息,提取的知识一般可表示为概念、规则、规律、模式等形式[1]。大家知道,如今已可以用数据库管理系统来存储数据,还可用机器学习的方法来分析数据和挖掘大量数据背后的知识,而这两者的结合就促成了数据挖掘技术的产生。数据挖掘是一门交叉性的学科,涉及到机器学习、模式识别、归纳推理、统计学、数据库、数据可视化、高性能计算等多个领域。
关联规则挖掘是数据挖掘中最活跃的研究方向之一,其本质是要找出隐藏在数据间的相互关系。Agrawal等于1993年设计了一个基本算法—Apriori算法[2],首先提出了挖掘顾客交易数据库中项集间的关联规则问题,其核心方法是基于频集理论的递推方法。以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行思想等,以提高算法挖掘规则的效率