文档介绍:自08-1班刘磊2107160811121智能小车是一个集环境感知、规划决策、自动行驶等功能于一体的综合系统——它集中地运用了计算机、传感、信息、通讯、导航、人工智能及自动控制等技术——是典型的高新技术综合体。本文设计的简易智能小车就是这种综合体的一种尝试。文中所设计的简易智能小车在多种传感器的配合下——具有自动寻迹、障碍物探测、金属检测以及追踪定点光源等功能,可以说基本实现了简易小车的智能化。系统结构设计简易智能小车系统结构设计模块轨迹探测模块简易智能小车在画有黑线的白纸“路面”上行使,由于黑线和白线对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”——黑线。判断信号可通过单片机控制驱动模块修正前进方向,以使其保持沿着黑线行进。轨迹探测模块用3只光电开关。1只置于轨道中间,2只置于轨道外侧,当小车脱离轨道时,即当置于中间的一只光电开关脱离轨道时,等待外面任意一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道)再恢复正向行驶。现场实测表明,虽然小车在寻迹过程中有一定的左右摇摆。但只要控制好行驶速度就可保证车身基本上接近于沿靠轨道行驶。驱动模块简易智能小车有两个电动机。其中一个小电动机控制前轮转向,给电动机加正反向电压,实现前轮的左右转向;另一电动机控制后轮驱动力,加的反向电压使小车前进或后退。控制转向电动机需要较小的驱动力,经过实验,选L293作为驱动芯片;由于后轮驱动功率较大,所以选用L298N,经过实验发现小车行使过程中负载较大,导致L298N发热较大,故给芯片添加散热片以保护芯片正常工作。为了优化控制性能,采用PWM脉宽调速,并利用数模转换芯片产生模拟电压,控制555生成占空比可调的脉冲从而控制L293B与L298N进行脉宽调速,具体实现电路。闭环控制:闭环控制有反馈环节,通过反馈系统是系统的精确度提高,响应时间缩短,适合于对系统的响应时间,稳定性要求高的系统。开环控制:开环控制没有反馈环节,系统的稳定性不高,响应时间相对来说很长,精确度不高,使用于对系统稳定性精确度要求不高的简单的系统。光源检测模块和避障模块1)寻找光源利用多只光源定位器。光源定位器主要由三极管检测电路构成。,用金属支架将3个光敏三极管固定在车的中间部分,并使光敏三极管尽量与光源保持水平。VT5为光敏三极管,三极管VT4、VT6构成达林顿管,三极管VT8是为了提高电路的带负载能力。由实验得知,由光敏三极管构成的该光源定位器输出是低电平,89S52可直接对信号进行判断。(2)红外传感器是目前使用比较普遍的一种避障传感器。模型车采用左右两个红外传感器,通过调节两个电位器来调节两个红外传感器的检测距离。该避障电路,能可靠的检测左前方、右前方、前方的障碍情况,实现良好的避障功能。金属探测模块及电源电路(1)在本模型车的跑道设计中,放着3块金属片,在弯道区的相应点也有一块金属片,要求小车行驶过程中对弯道上的金属片个数计数。检测到弯道上相应点的金属片后停车。在模型车中采用LC并联谐振测量方法。LC并联谐振的测量电路,电容C3,C4,C5外侧电感L2和反向器U1A构成了LC振荡回路,运放LM393实现了正弦波的整形功能,为了提高电路的带负载能力,在输出加上了一级反相器。(2)为确保小车在行驶过程中各部件均能正常