文档介绍:利用拉普拉斯算法对模糊图像进行锐化处理学院:电气信息工程学院专业:通信工程姓名:田鸿龙学号:摘要:本文描述了拉普拉斯高斯边缘检测算法结合算法在Delphi6编程环境下对BMP格式的灰度图像进行了边缘检测处理,从而体现其优越性。彩色图像增强过程中,对图像进行锐化处理是一个重要环节。介绍了图像锐化处理的概念和拉普拉斯算子的算法原理。关键词:边缘检测,图像处理,拉普拉斯高斯算法,Sobel算子。图像锐化(imagesharpening)就是补偿图像的,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。数字图像的边缘检测是图像分割、区域识别和特征提取等图像分析领域的重要基础。图像的边缘是图像的最基本的特征,是指图像局部亮度变化最显著的地方,通常与图像亮度或图像亮度的一阶导数的不连续性有关。对于数字图像灰度值的显著变化可以用梯度来表示,边缘检测很大程度上来说就是求梯度。边缘检测的好坏直接影响到图像理解和识别的质量,选择什么样的边缘检测算法就很关键。本文引入拉普拉斯高斯算法,讨论其工作原理,利用Delphi结合拉普拉斯高斯算法对BMP格式的灰度图像进行了边缘检测处理并对比其它算法给出了拉普拉斯高斯算子的优越性。图像锐化图像模糊的主要原因是图像中的高频成分低于低频成分,它对图像量的影响体现在两个不同灰度区域的边界部分。图像锐化处理的目的是加强图像中景物的边缘和轮廓,使模糊的图像变得更清晰。它是一种使图像原有信息变换为有利于人眼观察的质量、消除模糊、好的视觉效果、图像边缘轮廓分明。图像的模糊实质就是图像受到平均或积分运算造成的,因此可以对图像进行逆运算如微分运算来使图像清晰化。从频谱角度来分析,图像模糊的实质是其高频分量被衰减,因而可以通过高通滤波操作来清晰图像。但要注意,能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。图像的锐化一般有两种方法一种是微分法,另外一种是高通滤波法拉普拉斯锐化法是属于常用的微分锐化法。,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。考察正弦函数,它的微分。微分后频率不变,幅度上升2πa倍。空间频率愈高,幅度增加就愈大。这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。最常用的微分方法是梯度法和拉普拉斯算子。但本文主要探究几种边缘检测算子,Laplace、Sobel