1 / 14
文档名称:

均值不等式公式总结及应用.doc

格式:doc   大小:470KB   页数:14页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

均值不等式公式总结及应用.doc

上传人:读书百遍 2019/9/17 文件大小:470 KB

下载得到文件列表

均值不等式公式总结及应用.doc

文档介绍

文档介绍:均值不等式公式总结及应用均值不等式应用1.(1)若,则 (2)若,则(当且仅当时取“=”)2.(1)若,则 (2)若,则 (当且仅当时取“=”)(3)若,则(当且仅当时取“=”),则(当且仅当时取“=”)若,则(当且仅当时取“=”)若,则(当且仅当时取“=”),则(当且仅当时取“=”)若,则(当且仅当时取“=”),则(当且仅当时取“=”)(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例1:求下列函数的值域(1)y=3x2+(2)y=x+解:(1)y=3x2+≥2=∴值域为[,+∞)(2)当x>0时,y=x+≥2=2;当x<0时,y=x+=-(-x-)≤-2=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例已知,求函数的最大值。 解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,,当且仅当,即时,上式等号成立,故当时,。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:,求的最大值。解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。当,即x=2时取等号当x=2时,的最大值为8。评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:设,求函数的最大值。解:∵∴∴当且仅当即时等号成立。技巧三:。解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。当,即时,(当且仅当x=1时取“=”号)。技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。当,即t=时,(当t=2即x=1时取“=”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。,并求取得最小值时,x的值.(1)(2)(3),求函数的最大值.;3.,,:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,解:都是正数,≥当时等号成立,由及得即当时,:若,,y的值技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。2:已知,且,求的最小值。错解:,且,故。错因:解法中两次连用均值不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。正解:,当且仅当时,上式等号成立,又,可得时,。变式:(1)若且,求的最小值(2)已知且,求的最小值技巧七已知x,y为正实数,且x2+=1,:因条件和结论分别是二次和一次,故采用公式ab≤。同时还应化简中y2前面的系数为,x=x=x·下面将x,分别看成两个因式:x·≤==即x=·x≤技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a=,ab=·b=由a>0得,0<b<15令t=b+1,1<t<16,ab==-2(t+)+34∵t+≥2=8∴ab≤18∴y≥当且仅当t=4,即b=3,a=6时,等号成立。法二:由已知得:30-ab=a+2b∵a+2b≥2 ∴30-ab≥2令u= 则u2+2u-30≤0,-5≤u≤3