1 / 3
文档名称:

华罗庚的优选法.doc

格式:doc   大小:16KB   页数:3页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

华罗庚的优选法.doc

上传人:cjl201702 2019/9/20 文件大小:16 KB

下载得到文件列表

华罗庚的优选法.doc

文档介绍

文档介绍:大学数学文化作业姓名:王晨学院:政法学院学号:**********优选法的介绍优选法以数学原理为指导,合理安排试验,以尽可能少的试验次数尽快找到生产和科学实验中最优方案的科学方法。即最优化方法。优选法在数学上就是寻找函数极值的较快较精确的计算方法。(又称黄金分割法),后来又提出抛物线法。至于双因素和多因素优选法,则涉及问题较复杂,方法和思路也较多,常用的有降维法、瞎子爬山法、陡度法、混合法、随机试验法和试验设计法等。优选法的应用范围相当广泛,中国数学家华罗庚在生产企业中推广应用取得了成效。企业在新产品、新工艺研究,仪表、设备调试等方面采用优选法,能以较少的实验次数迅速找到较优方案,在不增加设备、物资、人力和原材料的条件下,缩短工期、提高产量和质量,降低成本等。优选法,是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法。例如:在现代体育实践的科学实验中,怎样选取最合适的配方、配比;寻找最好的操作和工艺条件;找出产品的最合理的设计参数,使产品的质量最好,产量最多,或在一定条件下使成本最低,消耗原料最少,生产周期最短等。把这种最合适、最好、最合理的方案,一般总称为最优;把选取最合适的配方、配比,寻找最好的操作和工艺条件,给出产品最合理的设计参数,叫做优选。也就是根据问题的性质在一定条件下选取最优方案。最简单的最优化问题是极值问题,这样问题用微分学的知识即可解决。实际工作中的优选问题,即最优化问题,大体上有两类:一类是求函数的极值;另一类是求泛函的极值。如果目标函数有明显的表达式,一般可用微分法、变分法、极大值原理或动态规划等分析方法求解(间接选优);如果目标函数的表达式过于复杂或根本没有明显的表达式,则可用数值方法或试验最优化等直接方法求解(直接选优)。所谓优选法选法,是华罗庚运用黄金分割法发明的一种可以尽可能减少做试验次数、尽快地找到最优方案的方法。比如要试制一种新型材料,需要加入某种原料增强其强度,这就有加入多少的问题,加多了不行,加少了也不行,只有完全合适才可以。比如我们估出每吨加入量在1克至1000克之间,这样我们就可以借用黄金分割规律来简化试验次数,而不必从1克到1000克做1000次实验,我们用一个有刻度的纸条来表示1至1000克。在纸条上找到618(1000*)克的地点画一条竖线,做一次试验,然后把纸条对折起来,找到618的对称点382(618*),再做一次试验,如果382克为最好,则把618以外的纸条裁掉。然后再对折,找到382的对称点236(382*)做试验,这样循环往复,就可以找到最佳的数值。优选的方法的问题处处有,,易于解决,,质量要求精益求精,优选