文档介绍:ADissertationinMechanicalDesignandTheoryRecognitionofStripSteelSurfaceDefectImagesBasedonParallelClassifiersIntegrationByXingZhitaoSupervisor:ProfessorYanYunhuiNortheasternUniversityJune2011独创性声明本人声明,所呈交的学位论文是在导师的指导下完成的。论文中取得的研究成果除加以标注和致谢的地方外,不包含其他人己经发表或撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均己在论文中作了明确的说明并表示谢意。学位论文作者签名:彳P芝涛日期:矽}7牟厶目叼目学位论文版权使用授权书本学位论文作者和指导教师完全了解东北大学有关保留、使用学位论文的规定:即学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人同意东北大学可以将学位论文的全部或部分内容编入有关数据库进行检索、交流。作者和导师同意网上交流的时间为作者获得学位后:半年口一年区一年半口学位论文作者签名:彳弘涛签字日期:卅2争6周叼目两年口导师签名:教易涿签字日期:洲节岬目东北大学硕士学位论文摘要基于并行分类器集成的板带钢表面缺陷图像识别幸摘要随着经济的发展,带钢已成为汽车、家电、机械制造、航空航天、化工、造船等工业不可缺少的原材料,在国民经济中占据重要地位。在生产过程,由于连铸钢坯、轧制设备、加工工艺等多方面的原因,导致带钢表面形成边缘锯齿、焊缝、夹杂、抬头纹等各种不同类型的缺陷。这些缺陷不仅影响产品的外观质量,还会降低产品的抗腐性、耐磨性和其它强度性能,成为影响带钢表面质量的一个重要因素。欲提高板带钢的表面质量,必须首先解决板带钢表面缺陷的检测与分类问题,继而分析相应缺陷产生的原因,最终提出消除缺陷的解决方案。板带钢表面缺陷识别的难度主要表现在两个方面:①某种类别缺陷包含其它类型的缺陷,比如抬头纹中包含夹杂的缺陷成分;②同一类别缺陷之间的形态差别很大,比如抬头纹之间、夹杂之间相差较大等,这就对分类器提出了较高的要求。本文针对现有板带钢表面缺陷检测方法存在的问题,如单个分类器在算法上很难有新的突破,单个分类器及串行分类器集成识别时对训练样本依赖性较高的缺点,给出了基于并行多分类器集成的板带钢缺陷图像识别方法。多分类器集成是指构建一个分类器的集合,并通过基分类器预测进行(权重)投票给出新的分类结果。分类器集成的目的是希望能充分利用每个基分类器的长处,从而获得比任何单个基分类器都要高的识别率。本文用灰度直方图统计特征等26维特征降维后的11维特征作为输入,将常用的BP神经网络、LVQ神经网络、RBF神经网络和支持向量机作为基分类器,对经常出现的边缘锯齿、焊缝、夹杂、抬头纹等四类缺陷进行分类识别。将基分类器进行差异性度量后,选择最终的基分类器,用投票法及加权投票法进行集成。实验表明并行多分类器集成方法在板带钢表面缺陷图像的分类识别中应用是可行的,对120张缺陷图像的总体识别率达到95%以上。N神经网络特征提取与降维的结果作为输入特征,进行分类器集成识别,%。另外,实验还用差异性较大的夹杂和抬头纹作为样本进行分类识别,结果表明并行分类器集成系统不但能够提高识别率,而且对训练样本的依赖性较小,泛化性较高。东北大学硕士学位论文摘要关键词:板带钢;表面缺陷;机器视觉;多分类器集成;识别素论文工作得到的项目支持:国家高技术研究发展计划(863计划)资助项目();国家自然科学基金资助项目();沈阳市高技术产业发展项目计划资助项目()东北大学硕士学位论文AbstractRecognitionofStripSteelSurfaceDefectImagesBasedonParallelClassifiersIntegration女AbstractWiththedevelopmentofeconomy,eakindofindispensablerawmaterialincars,homeappliances,mechanicalmanufacturing,aerospace,chemical,shipbuildingandotherindustries,,differenttypesofdefectssuchasedgesawtooth,weldingline,impurity,wrinklesetc,willbe