1 / 28
文档名称:

遥感卫星影像预处理的方法步骤.doc

格式:doc   大小:13,320KB   页数:28页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

遥感卫星影像预处理的方法步骤.doc

上传人:allap 2019/10/25 文件大小:13.01 MB

下载得到文件列表

遥感卫星影像预处理的方法步骤.doc

文档介绍

文档介绍:1技术路线数据查询数据获取数据预处理质量检查整理提交原始数据正射校正平面控制高程数据辐射校正辐射定标大气校正配准融合整体镶嵌范围裁切 ,如:传感器的成像方式、地形起伏、地球曲率、大气折射等,导致图像本身的几何位置、形状、尺寸等与其对应的地物不一致,发生变形。通过一定的数学模型来改正和消除遥感影像产生的变形的过程称为几何校正。通常情况下,对影像进行粗略几何校正时,需要利用卫星等提供的一些轨道、姿态参数以及与地面系统相关的处理参数来进行校正。当精度要求较高时需对影像进行几何精校正,即利用地面控制点及畸变模型对原始影像进行校正。经过粗校正之后接收到的全色影像数据中的大部分地物已经实现了重叠,只有个别仍存在偏差。此时,需要利用DEM数据对全色影像做正射校正,生成全色影像的正射影像图。正射校正是将中心投影的影像进行纠正形成正射投影影像的过程,先把影像化分为许多小区域,之后根据相关参数按照对应的中心投影构像方程或者特定的数学模型用控制点进行解算,得到解算模型后利用数字高程模型对原始遥感影像进行校正,最终获得数字正射影像。、。若正射影像上任意一点P的中心坐标为(X1,Y1),由其左下角图廓点的地面坐标(X0,Y0)与其比例尺分母M计算得到P点对应的坐标(X,Y)。公式(1)X=X0+M×X1Y=Y0+M×Y1。运用反解公式计算原始影像上对应像元点的坐标P(x,y),反解公式为:公式(2)其中:Z是像元点P的高程,是数字高程模型DEM内插得到的,再将像元点坐标转换成数字化影像的坐标或扫描坐标(I,J)。公式(3)。灰度内插可以采用双线性内插(因为所得的像元坐标不一定落在像素中心),求像元点P的灰度值g(x,y)。。将像元点P的灰度值赋给校正后的像元点P,即:公式(4)对每个校正像素逐个进行计算,即能得到数字正射影像(DOM)。2、,纠正控制点要均匀分布,控制区域大于片区范围。每景控制点数量在9-15个之间,山地适当增加控制点。控制点点位示意图选取影像清晰、易于判别、明显的特征地物点进行校正,如道路交叉处、球场角、围墙角等位置。相邻景重叠区选取不少于3个公共点,上下相邻的影像由于重叠较少,较难实现共用控制点时,在实际工作中,尽量采用独立控制点。控制点选取时,应避免在调查底图镶嵌线附近,不同生产单位生产的相邻底图区域,以及更高分辨率遥感数据源生产底图的平原、丘陵区高速公路和桥梁等地物上选点。在纠正单元内,如果纠正参考的基础底图同时包括1:1万和1:5万两种,可根据控制点分布区基础底图比例尺,对一景数据分块后,采用各自基础底图分别纠正。但其中一种比例尺基础底图只占小部分可整体纠正。根据纠正过程中软件自动记录的控制点残差文件,检查正射纠正控制点点位精度。要求纠正控制点残差中误差应不大于下表中的规定,取中误差的两倍为其最大误差。若控制点残差超限,则查找原因并重新选点。纠正控制点残差表地形类别平地、丘陵地(像素)山地、高山地(像素),得到全色正射影像和多光谱正射影像。分为单景纠正和区域网平差法纠正。(1)单景纠正不同轨道、不同时相的遥感影像,通常对单景数据采用有理函数模型进行正射纠正。RPC(RationalPolynomialCoefficients)有理多项式模型在遥感影像几何处理中有广泛应用,是模拟构筑真实传感器模型的常用计算方法。建立地面点与对应影像像点几何关系,不同RPC模型参数个数不同,导致所需要最小控制点数目不同。一般而言,基于RPC模型的单景影像纠正需在影像上至少采集9个控制点。如图所示。单景纠正图(2)区域网平差法当工作区涉及连片多景同源遥感数据且相邻影像间重叠度达到要求时,优先使用区域网平差纠正方法对多景影像进行整体纠正。相邻景影像重叠区内至少选取3个公共点。采用有理函数模型,如图所示。(区域网)影像进行纠正精度的初步检查。以DOM影像作为参考标准,采用ERDAS中的“拉窗帘”工具对正射纠正后的成果与参考影像平面位置偏差进行比较。若影像发生了明显抖动或错位现象,则量测该处同名点误差。如果点位偏差超出最大误差限差,需要对影像重新进行正射校正;如果没有超出限差,继续下步工序,以确保接下来的影像处理工作顺利进行。“拉窗帘”对正射纠正精度进行检查图叠加配准后的全色影像和多光谱影像,以略大于